Air Quality Management: London Experience

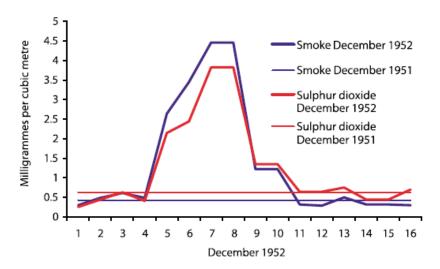
John Murlis
Environmental Protection UK

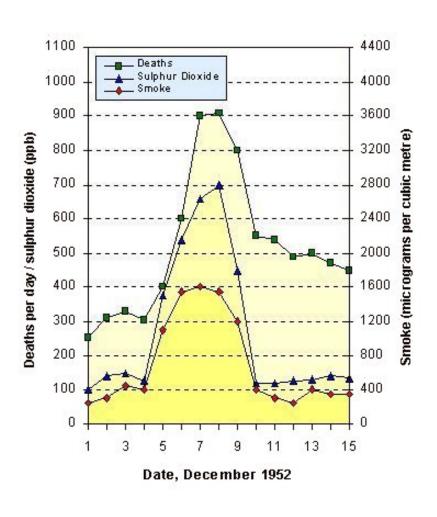
Overview

- Where we were
- Causes
- Options
- Strategy and measures taken
- Where we are now
- Lessons
 - Analysis of problem
 - Assessment of options
 - Planning
- Conclusions

Where we were

- Weak regulation of industrial combustion
- Domestic unregulated
- Severe smogs locally over many centuries
- But no effective action because no political will, poor information and dependence on highly polluting technology
- Great winter smogs of 1952/1953
- Immediate impacts 4000+ mortality in London




Figure 1
Smoke and sulphur dioxide concentrations at County
Hall during the London smog of December 1952 compared to the average concentrations in
December 1951

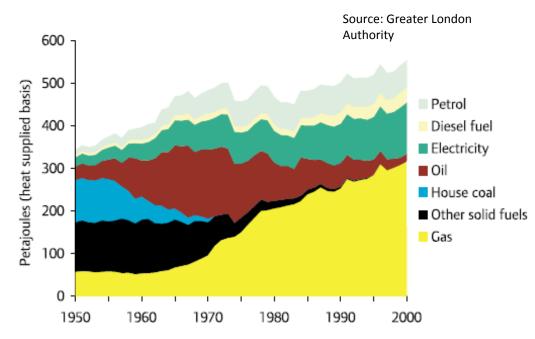
Source:

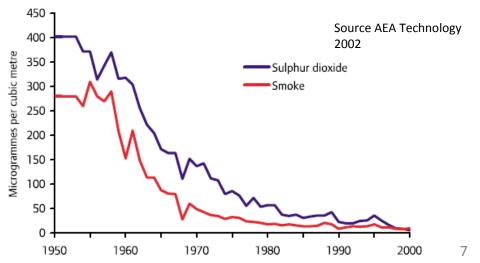
London County Council 1953

Deaths from Great Smog of 1952

Causes

- Coal burning in homes, power stations, factories (high sulphur coal)
- Main end use: space heating (cooking by gas)
- Open grates in homes: inefficient combustion
- Urban power stations (Bankside, Battersea)




Options

- Cleaner fuels
 - "smokeless" solid fuel
 - Gas
 - Paraffin (oil-derived liquid fuel)
 - Electricity (urban use, generated out of urban areas)
- Cleaner combustion
 - Stoves (solid fuel or paraffin)
 - Gas-fired central heating
- Energy efficiency
 - Insulation
 - Draught proofing

Strategies and Measures

- Government slow to act (4 years to Clean Air Act)
- Beaver Committee 1953 to 1955:
 - Domestic coal burning identified as main cause
 - Action to ban use of coal in "smoke control areas"
- Switch to oil (paraffin) short term
- Gas as space heating fuel, longer term
- Measures codified in Clean Air Act 1956

Where we are now

- Central heating in almost all buildings
- Gas dominant space heating fuel in homes
- Main cause of poor ambient air quality is now traffic
- Levels controlled by EU legislation
- Traffic, mainly diesel particulate matter, the main ambient issue now
- Indoor pollution is significant factor in exposure

Lessons learned: Analysis

Effective strategy requires knowledge:

- Know the nature of the problem (pollutants and impacts)
- Know the immediate causes (inventories of sources and emissions)
- Know the root causes (demand for energy services: space heating; mobility; distribution; cooking)
- Understand options (performance, costs, implementation time scales)
- Focus on health/exposure means including indoor air quality

Lessons learned: Assessment of Measures

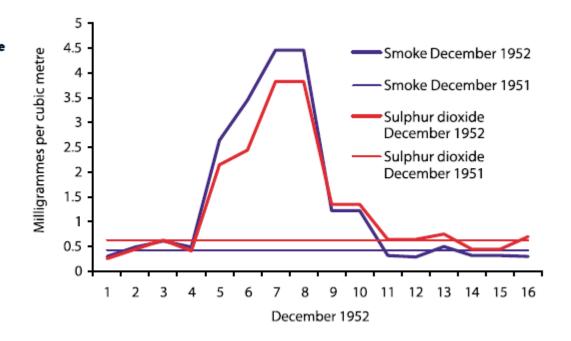
Effective measures match urgency to implementation time scales:

- Short term measures: fuel switch and current combustion (smokeless solid fuel)
- Medium term measures: new equipment (oil/gas electricity for heating)
- Long term measures: energy services (energy saving/efficiency, neighbourhood heating)

Lessons Learned: Planning

Effective planning requires flexibility, experience suggests:

- Act fast (never waste a crisis: public support for action will be at its strongest, a good time to bid for resources, staff, training!)
- Make a Road Map with milestones and a mix of measures
 - Set long-term aims first (certainty for industry about end points)
 - Then negotiate timetable (taking technology/product ladders into account)
- Ensure one final regulator (splitting transport from stationary source regulation a big mistake!)
- Engage with civil society/environmental interest groups/residents associations to ensure enduring support


Conclusions

- 1952 Smog a major wake-up call
- Much progress since then on smoke control and domestic emissions
- Main gains from gas and electricity for space heating
- Traffic now main urban pollutant
- Progress from EU standards for vehicle emissions
- But more to be done: clean air in cities will require cleaner vehicles (electricity for light duty and gas for heavy duty)
- Lessons from the past:
 - knowledge and understanding,
 - assessment of options,
 - Effective planning
- Change is possible!

December 1952

Figure 1
Smoke and sulphur dioxide concentrations at County
Hall during the London smog of December 1952 compared to the average concentrations in December 1951

Source: London County Council 1953

Fuels in Use

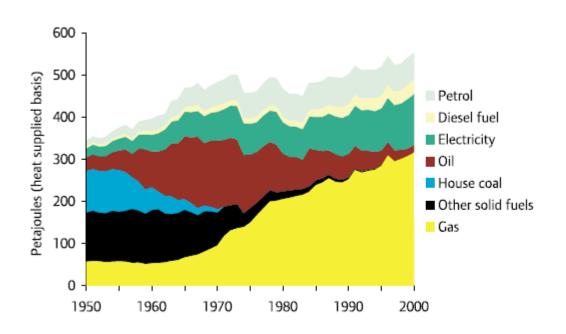


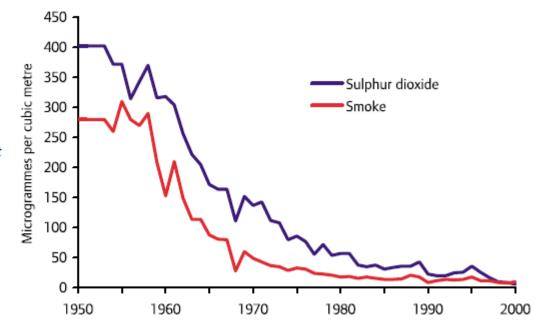
Figure 4 Energy use in London 1950-2000

Source: Greater London Authority

Note:

- •Gas is a major factor post 1965
- •House coal reduction main short term measure
- •Oil was main short term "gap filler"
- •Electricity play an important part

Impacts of Strategies and Measures


Figure 3
Annual average smoke
and sulphur dioxide
concentrations in London
1950 to 2000

Source:

AEA Technology Environment 2002

Note: Before 1954 data

was only published as 5-year averages

