Green Port Evaluation Standard and Choice of Policy Tools for Reducing Ship Emission in China

Prof. PENG CHUANSHENG

China Waterborne Transport Research Institute February 27, 2014 Shanghai

Contents

1 Green Port Conception

2 Green Port Evaluation Standard

3 Reduce Ship Emission Policy Tools

4 Choice of Policy Tools in China

Contents

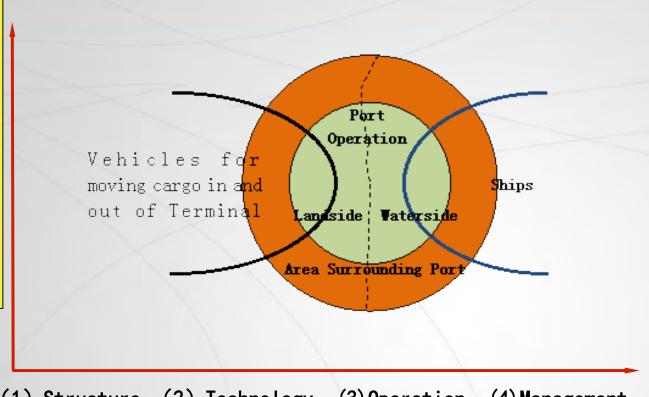
1 Green Port Conception

2 Green Port Evaluation Standard

3 Reduce Ship Emission Policy Tools

4 Choice of Policy Tools in China

Green Port: Contents


GREEN, as an develop model, is equal to SUSTAINABLE or RESOURCE-EFFICIENCY and ENVIRONMENT-FRIENDLY. At present, it's contents should include

- 1 Saving resources
- 2 Reducing emissions
- 3 Protecting environment
- 4 Controlling GHG

Green Port: Scope

Policy+Procedures +Standard+Specification

- 1 Planning
- 2 Design
- 3 Construction
- 4 Modification
- ⑤ Operation

(1) Structure (2) Technology (3) Operation (4) Management

Green Port: Conception

aradaa atandard

Port or terminal which operator, In the process of production operation, adhere to the concept of resource saving, environment friendly development, actively fulfill the social responsibility, comprehensive taken to save resources and energy, protect environment and ecology,

technology and management measures to address

climate change, meet the corresponding green port

Contents

1 Green Port Conception

2 Green Port Evaluation Standard

3 Reduce Ship Emission Policy Tools

4 Choice of Policy Tools in China

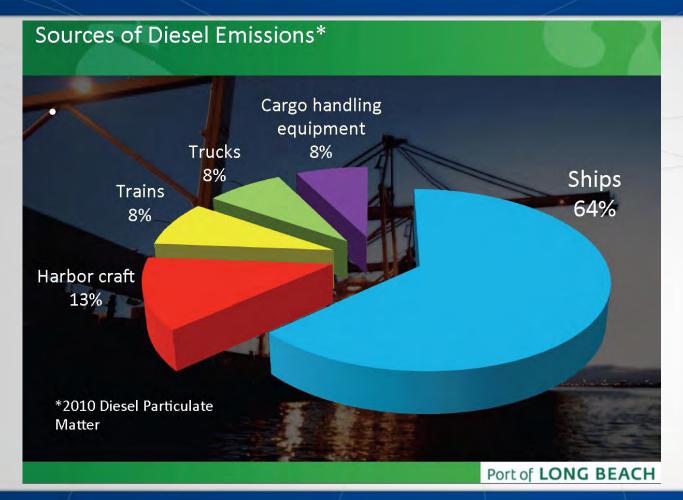
Goal: Unify understanding of green port

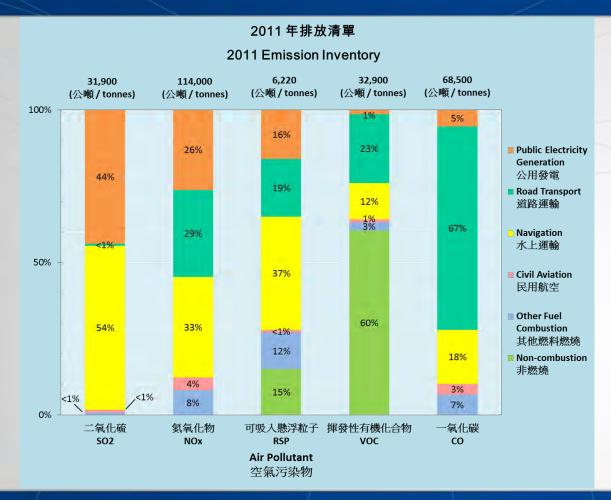
Standardize green port evaluation

Promote transformation of port development

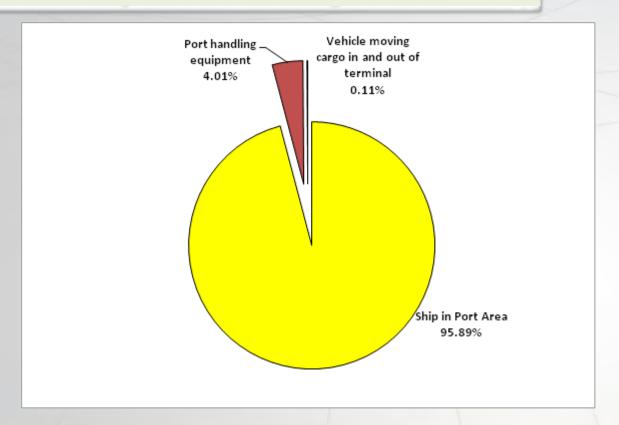
Principle: Philosophy is the foundation

Action is the key


Management is the guarantee


Aim is effect

Item	Score Weight	Sub item	Indicator	
Philosophy	0. 10	Strategy	Strategy Planning	
			Funding	
			Work Plan	
		Culture	Enterprise Culture	
			Education Training	
			Promotional Activities	
Action	0.40	Environment Protection	Pollution Control	
			Comprehensive Utilization	
			Ecological Protection	
		Energy Saving	Main Equipment	
			Operation Technology	
			Auxiliary Facilities	
		Low Carbon	Fuel Replacement	
			Renewable Energy Sources	


Item	Score Weight	Sub item	Indicator
Management	0.15	System -	Management Organization
			Audit and Verification
		mechanism	Objective Assessment
			Statistical Monitoring
			Incentive and Constraint
Effect	0.35	Effect -	Environment Protection and Zoology
			Resource Saving and Low Carbon
		Level -	Environment Protection and Zoology
			Resource Saving and Low Carbon

Green Port Grade	***	****	****
Score E	75≪E	85≤E<95	E≥95
Action score P	P≥70	P≥80	P≥90
Green port planning	_	_	√
Green development special found	√	√	√
Annual report on green development	√	√	√
Objective assessment system	√	√	√
Environmental qualification IS014001	_	√	√
Use onshore power for ship	_	_	√

PM2.5 Emission from Ship in Port of Shanghai in 2010

Standard for Green Port Grade Evaluation has been promulgated in 2013, in order to promote ports development transform from extensive model to intensive model, with minimal resource consumption and environmental costs, maximize provide high quality service.

Contents

1 Green Port Conception

2 Green Port Evaluation Standard

3 Reduce Ship Emission Policy Tools

4 Choice of Policy Tools in China

Policy Tool: Incentive Mechanism

• Green Flag Program of Port of Long Beach

Under the Green Flag program, the port offers discounted dockage fees and environmental awards to vessel operators who achieve compliance rates of 90% or better and Green

Flags to individual ships that have 100% compliance with

- the program for a year.
- Green Harbor Program of SingaporeFair Winds Charter of Hong Kong

Policy Tool: Mandatory Mechanism

●Directive 2005/33/EC

From 1 January 2010 on, ships at berth in Europe Union ports for more than 2 hours shall not use marine fuels with a sulphur content exceeding 0.1% by mass except that ships switch off all engines and use shore side electricity while at berth in ports.

•California Code of Regulations

Beginning January 1, 2014, fleets calling at California ports must shut down their auxiliary engines and plug into the electrical grid while at berth.

Policy Tool: Emission Control Area

Baltic Sea SOx Emission Control Area (19 May, 2006)

Policy Tool: Emission Control Area

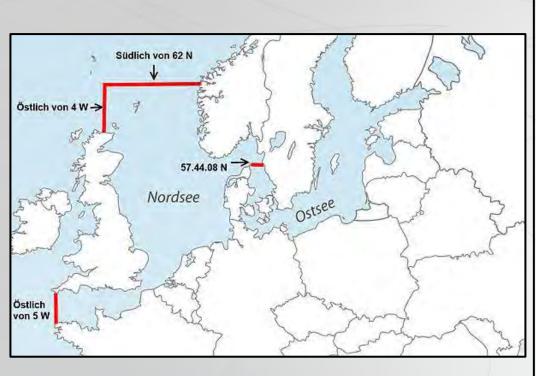
North Sea SOx Emission Control Area (11 November, 2007)

Policy Tool: Emission Control Area

North America Emission Control Area (1 Auguest, 2012)

Contents

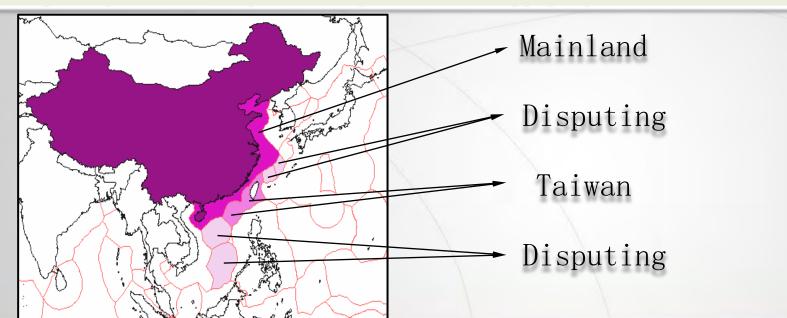
1 Green Port Conception

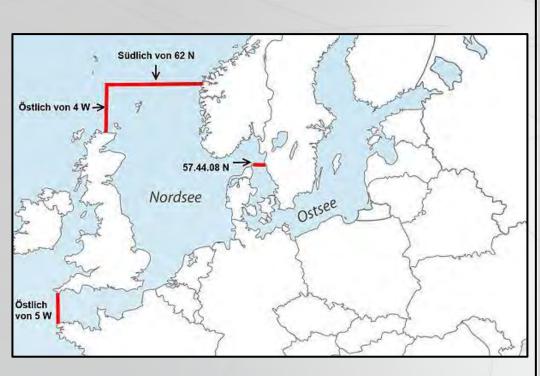

2 Green Port Evaluation Standard

3 Reduce Ship Emission Policy Tools

4 Choice of Policy Tools in China

Choice of Policy Tool: Construct National Emission


Technical possible: Netherland, Belgium, Germany, Denmark, Poland, US and so on

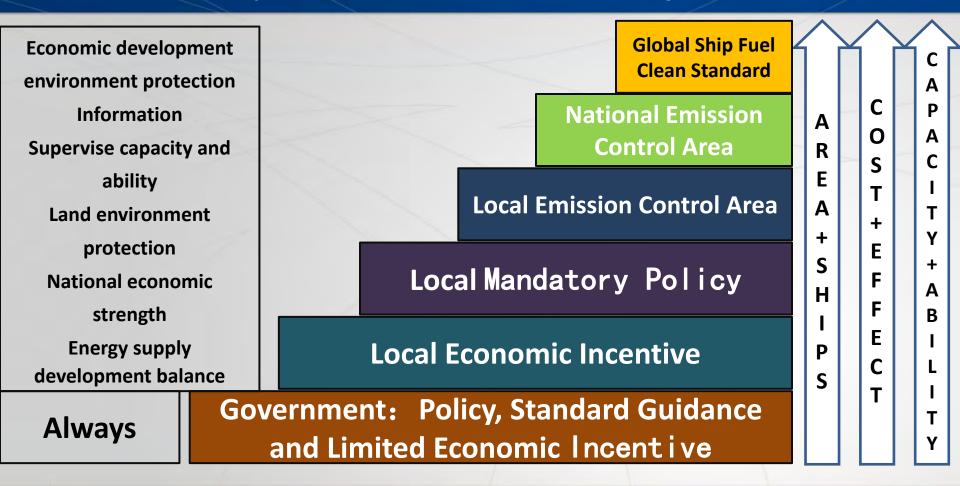

Choice of Policy Tool: Construct National Emission Control Area

- ① Lack of information for Proposal
- ② Land environment protection: 10ppm gas and diesel all over the country in the end of 2017
- 3 Dispute exclusive economic zone
- 4 Supervise capacity and ability building and fuel supply system

Choice of Policy Tool: Construct Local Emission Control Area

Technical possible: Finland, Sweden, France, Britian, Canada

Choice of Policy Tool: Construct Local Emission Control Area


① Port competitiveness change inside and outside Area

三条铁路集装箱班列示意图

Choice of Policy Tool: Conditions and Requirements

To avoid affect regional economic development the competitiveness excessively, local governments buy environmental protection effects. 2 examples:

- Shenzhen government will compensate port half cost for constructing onshore power supply equipment and charge 0.75RMB per kWh electricity used by ship at berth.
- Guangdong province green port action plan will use port construction fee as green port project subsidy.

Prof. PENG CHUANSHENG

China Waterborne Transport Research Institute

Tel: 86-10-65290315

Email: pengcs@wti.ac.cn

THANKS