

Status Quo and General Tendency of Vehicle Power Battery in China

Huang Xuejie
Institute of Physics Chinese Academy of Sciences

November 21, 2014

Overview of china EV Project of EV supported by MOST

2011-2015

5M

0.5M

10K

Year 2015

Year 2010

10 City 1000 Vehicles in public transportation.

Battery Pack

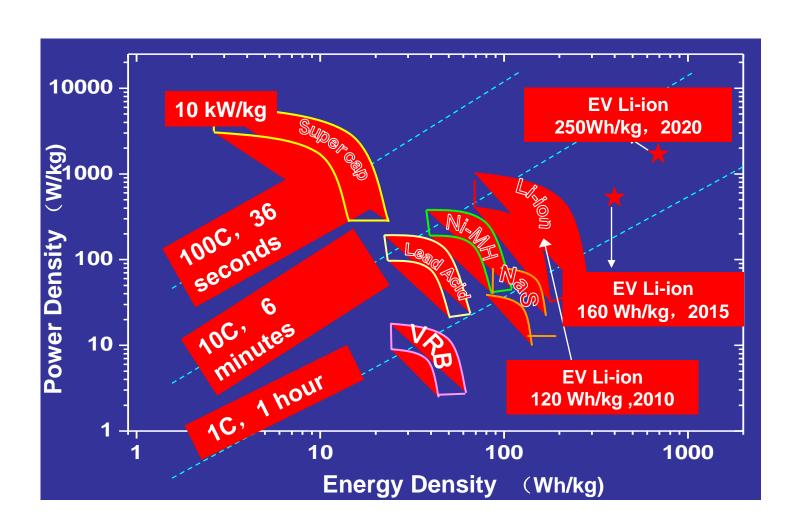
- Energy density >80Wh/Kg
- Cycle life>1000
- · Cost<4.0 ¥/Wh

The reservation of EV in demonstration cities up to million level

Infrastructure: build 2000 charge/exchange station, 400,000 charge pole for EV Battery Pack

- Energy density >120Wh/Kg
- Cycle life>2000
- · Cost<2.0¥/Wh

Year 2020


Variant EVs will take into demonstration and commercialize in whole country, the reservation will up to 10 million level

Infrastructure: build the power and information network for EV, connected with smart grid system, construct the V2G and V2H systems.

New Battery Pack

- Energy density
 >200Wh/Kg
- · Cycle life>2000
- · Cost<1.0 ¥ /Wh

Electrochemical energy storage technologies

Power Battery Technology Chain

Safety management

technology, process

Industrialization

and equipment

Battery material system 1. R&D Anode Cathode Separator Electrolyte Interface technology **Battery cell** Battery design Model and system Electric property Structural design ◆ Temperature property Thermal management Safety Electricity management Cycle life

Shelf life

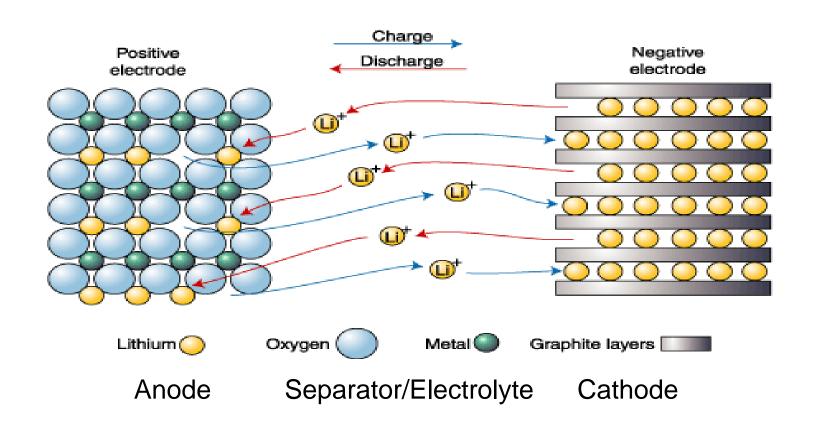
Industrialization

and equipment

technology, process

2. Evaluation

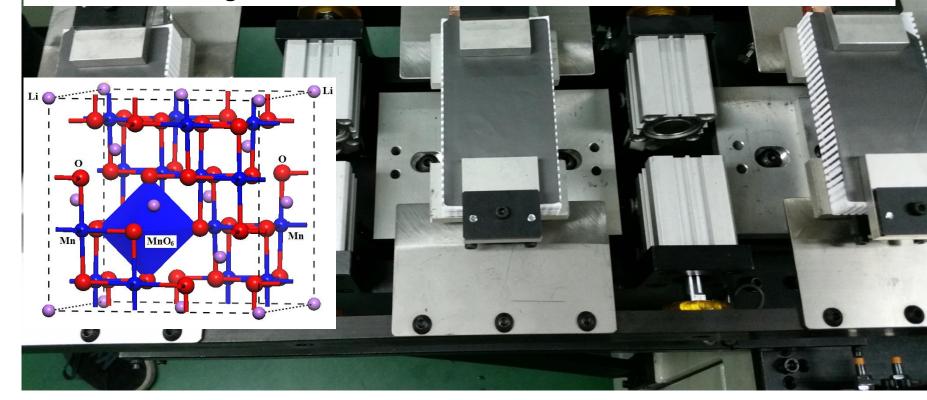
Test


- Electrical property
- Safety
- Reliability
- Environmental adaptability

3. Improvement

Model investigation

- Electric model
- Thermal model
- Safety prediction
- Safety management
- Life prediction


The development of high-performance battery depends on the technological advances of anode/cathode/separator/electrolyte and other key materials

Cathode materials	Average voltage relative to lithium metal (V vs Li)	Specific energy available (mAh/g)	Specific energy of anode materials(Wh/kg, by the average voltage relative to lithium metal)	Expected specific energy after connecting the graphite cathode(Wh/kg)	Predication of safety, cost and service life
LiCoO ₂	3.9	140	546	200	High battery volumetric energy density, long service life, high cost and low safety
LiMn ₂ O ₄	4.0	110	440	140	High safety, low cost, but short service life
LiFePO ₄	3.4	155	527	160	High safety, low cost and long service life
NCM	3.8	160	646	220	Poor safety, low cost and long service life
LiNi _{0.5} Mn _{1.5} O ₄	4.7	130	611	200	High safety, low cost and technology to be broken through
Li-rich oxides	3.6	270	972	280	Poor safety, low cost and further research required

LiMn₂O₄(LMO) cells

- High safty
- Low cost
- 140Wh/Kg

Independent R&D of Mechanized equipment

Equipment feature: independent R&D suitable to flat sheet separator packaging

The separator packaging machines have been successfully developed according to technological characteristics and have obtained patent right. Put the separator onto the surface of anode to conduct lamination works.

First-generation separator packaging machine

Second-generation separator packaging machine

Lamination stacking machine

CADREDEVILLE

es facteurs

e modernisent

ANÉLIORER LA DISTRIBUTION

Ces nouveaux équicoments s'inscrivent dans un programme de modernisation de toute la chaîne du courrier, de la collecte

These, cares coules depli interested main in des forces accounts to destinations of course and the forces accounts to destination of course and the forces accounts to the force of the force and the force accounts to the force of the force and the force accounts to the force account to the force accounts to

u camion à la boîte aux lettres 7 h 20 : Prize de service des facteurs Nogent

 plateforme de préparation et de tion du countier de Fontanay/Nogent iter currier arrive du centre de traitement iter à Crète I. Il y a, la trois camiere au ior a United II y au a trois carmines au i ambient le courrier de Nagent II est sur les différents chartiers de tri (cttro...) Les courrers sur lesquels in coce barre (lettres ordo remainées, ablas...) sont traités séparément dons léa é.

and the account particular of the particular and the account of th au quanti en au contre de distribution de Nagent par les 39 agents. ¿Amillans de courriers entrent et partent du Val-de-Nieme tous les jours l

Masonino de Nasarril vo 2000 23

. 09CA21458

(UL) the standard in safety

NOTICE OF AUTHORIZATION TO APPLY THE UL MARK

2009-07-29

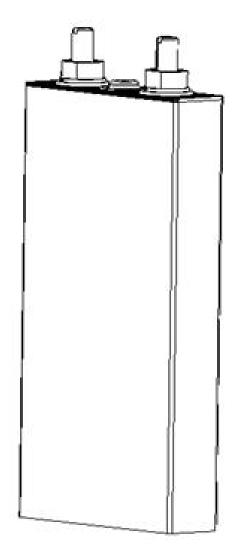
Phylion Battery (suzhou) Co Ltd Mr. JAMES LEE 81 Xlangyang Rd Snd Suzhou Jiangsu 215011, Cn

Our Reference: File MH29933, Vol. 1

Project Number Your Reference: Susle Haung, 4-7-09 USR - Secondary Lithium ion cell, Model IFP32/101/192HA for UL Investigatio Project Scope: Dear Mr. JAMES LEE:

UL's investigation of your product(s) has been completed under the above Reference Number and the product was determined to comply with the applicable requirements.

This letter temporarily supplements the UL Follow-Up Services Procedure and serves as authorization to apply the UL Mark only at authorized factories under UL's Follow-Up Service Program.


To provide the manufacturer with the intended authorization to use the UL Mark, the addressee must send a copy of this notice to each manufacturing location currently authorized in File MH29933, Vol. 1.

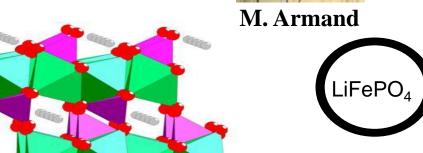
This authorization is effective from the date of this Notice and only for products at the indicated manufacturing locations. Records in the Follow-Up Services Procedure covering the product are now being prepared and will be sent in the near future.

with UL's requirements. If changes in construction are discovered, appropriate action will be taken for products not in conformance with UL's requirements and continued use of the UL Mark may be withdrawn UL may elect to withdraw use of the UL Mark if the Applicant or Manufacturer fails to comply with UL's requirements including ongoing compliance of the product, under UL's Follow-Up Service.

High-power lithium-ion battery cell manufactured by Phylion Battery

1. Basic features			
Туре	IMP20/66/148-08PS		
Thickness x Width x Height	20mm × 66mm × 148mm		
Nominal voltage	3.70		
Nominal capacity	8Ah		
Internal resistance	≤6 mΩ		
End-off voltage	2. 7V		
Maximum charge voltage	4. 2V		
Maximum charge current	8C (10s)		
Charging method	CC/CV (Constant current and voltage		
Maximum discharge current	20C (20s)		
Weight	<420g		
Operating temperature	Charging	0~45℃	
oporaning temperature	Discharging	-20∼45°C	
Storage temperature (with 50% power and to be re-charged every three month)	-10~35℃		
2. Technical features			
Capacity at normal temperature C1	≥7.5Ah		
	2C	>95% C₁	
Rate discharge	зс	>90% C ₁	
	5C	>85% C₁	
Cycle life	1000 times (cycled to 60% at normal temperature 1C, 100% DOD)		

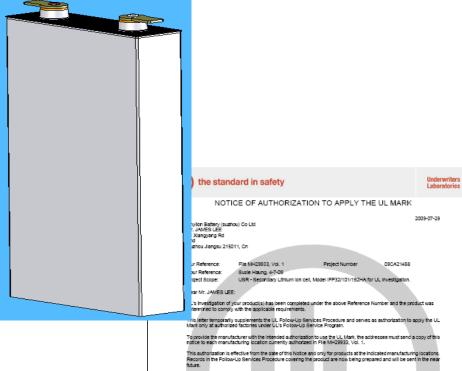
Lithium-ion power battery manufactured by Phylion Battery: From E-bike to EV



LiFePO₄(LFP) cells

~170 mAh/g $\varphi_{Fe3+/Fe2+} = 3.4 V$ $\varphi_{Mn3+/Mn2+} = 4.0 V$

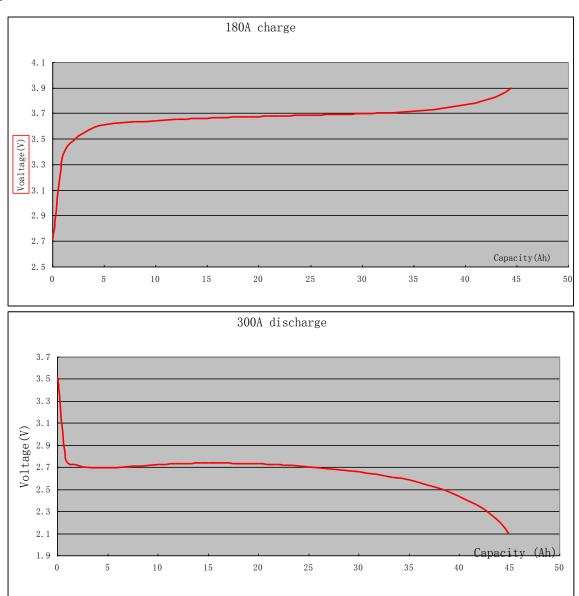
☐ High Safety


☐ Low cost

☐ Long life

1999

Carbon Coating


40Ah LFP cells(120Wh/Kg, 1000W/Kg)

Dimensions	32mm x 100mm x 192mm		
Nominal Voltage	3.2V		
Impedance (1KHz AC(≤2mΩ		
Power density	1000W/Kg		
Energy density	120Wh/Kg		
Operating temperature range	Charge	0~45℃	
	Discharge	-20∼45°C	
Storage temperature range	-10∼35℃		
1C Discharge capacity	≥40Ah (C ₁)		
Rate Capability	5C	>90%C ₁	
Cycle life	>2000 (100%DOD)		

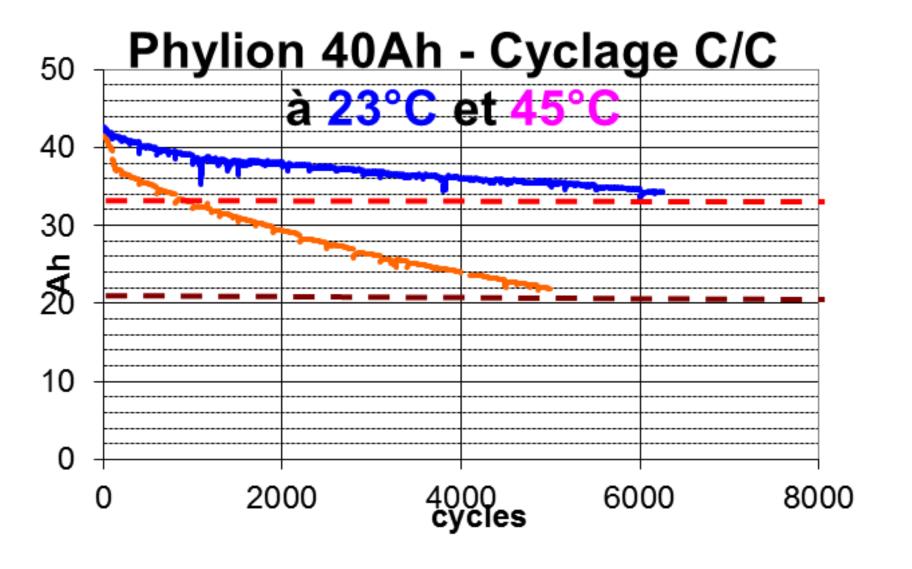
Products that bear the UL Mark shall be identical to those that were evaluated by UL and found to comply with UL's requirements. If changes in construction are discovered, appropriate action will be taken for products not in conformance with UL's requirements and continued use of the UL Mark may be withdrawn UL may elect to withdrawn use of the UL Mark the Applicant or Manufacturer falls to comply with UL's requirements including applies compliance of the product, under UL's Follow-Up Service.

Rate performances of 40Ah LFP cell at 25°C

Mileage: 128~130 kilometers*

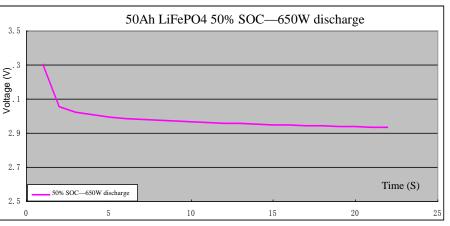

Maximum speed: 110 kilometers /hour

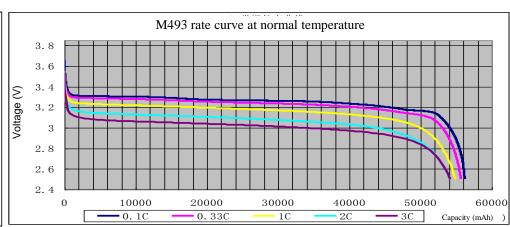
Charging time: 3 hours


Market price: Euro 19500~22500

· Mainly used for: Urban carsharing

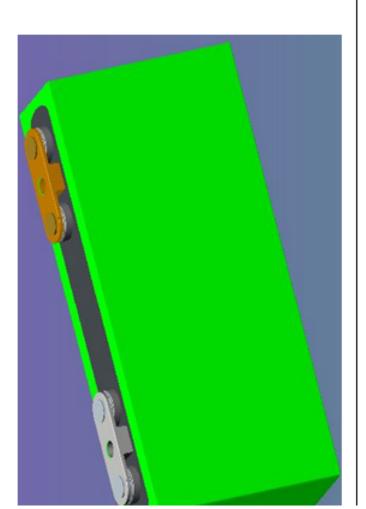
- Launched in October 2010, with 73 vehicles sold in first stage;
- Carsharing services were provided in 2011 with 938 vehicles ordered;
- Private sales were available in 2012.




40Ah Cell test by EDF in France (2008-2010)

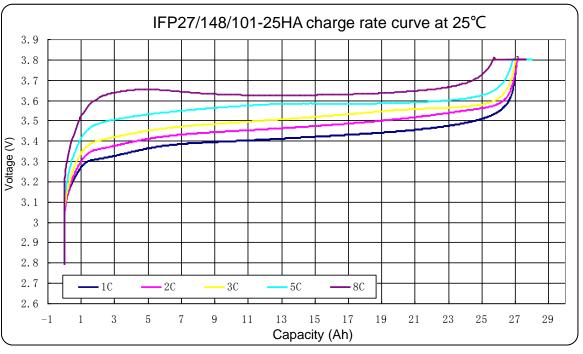
50Ah power battery with LiFePO4 shell

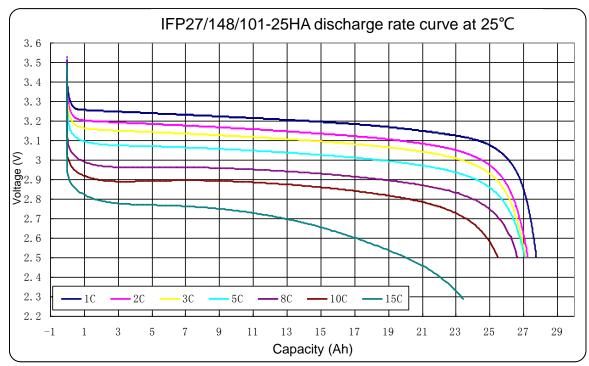
50Ah LiFePO4 battery	Unit	Final index	Actual measurement in 2013
Capacity	Ah	50	54.772
Power density	W/Kg	≥600	915.578
Energy density	Wh/Kg	≥140	146.982
Cycle life	%SOC	≥1600	1200次余94.1%

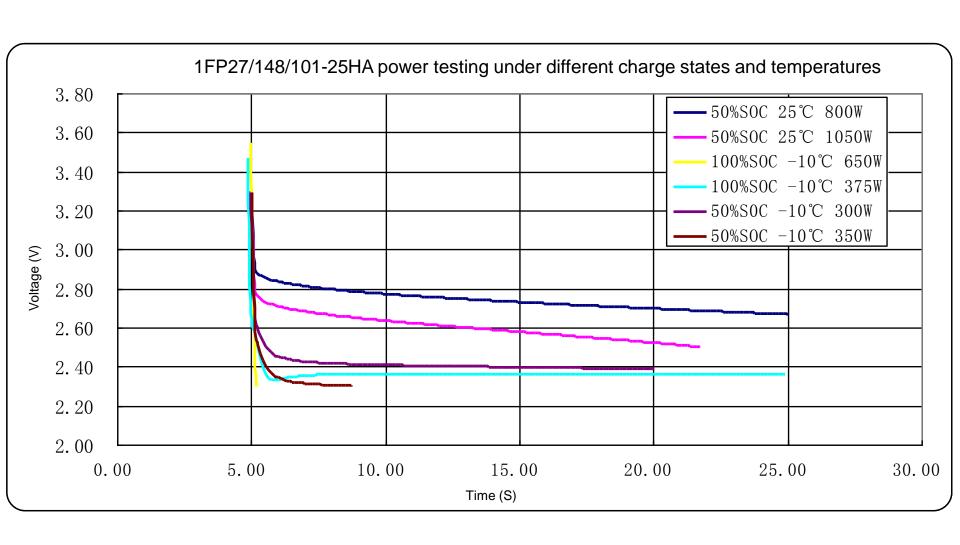

Power density test curve

Room temperature ratio test curve

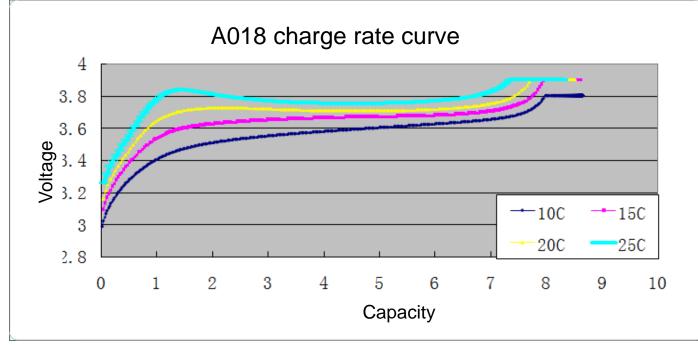
25Ah LFP Comprising Energy and Power Cell

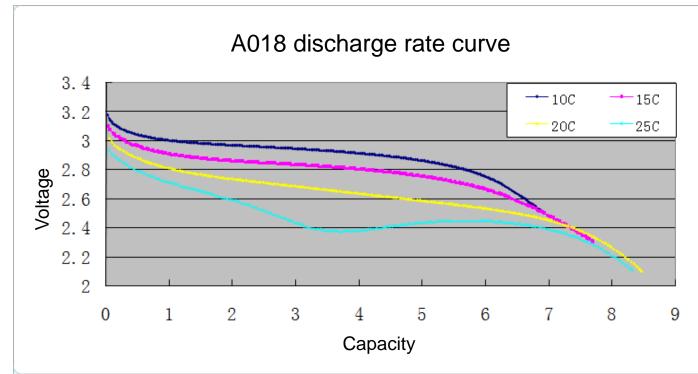

1. IFP27/148/101-25HA Prismatic Al Case Cell Specification

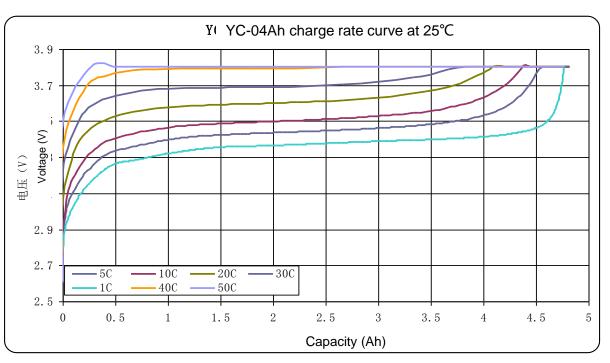

IFP27/148/101-25HA Prismatic Al Case Cell Specification					
1 Basic parameter					
Туре	IFP27/148/101-25HA				
TxWxH (max)	27mm × 148mm × 101mm				
Nominal Voltage	3.2V				
Nominal CapacityC2	25Ah (<u>0.</u>	5C)			
Internal Resistance	≤1.5mΩ				
Discharge Voltage Limit	2.57				
Charge Voltage Limit	3.87				
Max. Charge Current	5C				
Max. Discharge Current	8C				
Charge Method	cc/cv				
Weight	≤775g				
O	Charge	0~45°C			
Operate Temp.	discharge	-20~50°C			
Storage Temp.(storage					

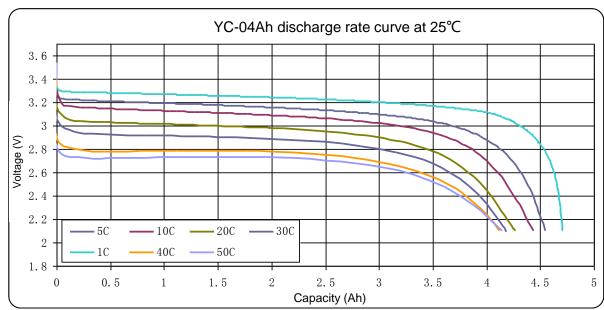


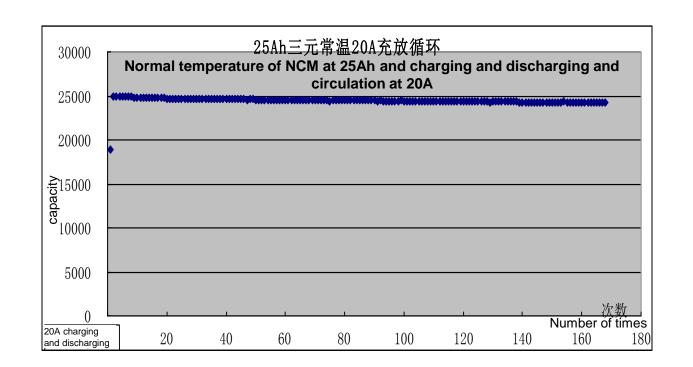
Shanghai H&D EV Battery


LFP/graphite cell






LFP/graphite cell


LFP/graphite+HC cell

Power battery with less energy consumption and high efficiency made of LMO and NCM

25AhLMO/NCM battery	Unit	Final index	Actual measurement
Capacity	Ah	25	28.077
Power density	W/Kg	≥600	976.465
Energy density	Wh/Kg	≥160	169.773

Results of safety test (made by the third party) on power battery with less energy consumption and higher efficiency made of LMO and NCM

Conclusion: high temperature, acupuncture, short circuit, over-charge and extrusion. Explosion and firing of battery is not detected in the test.

Cell over-discharging

Cell over-charging

Cell short circuit

Cell dropping

High cell temperature

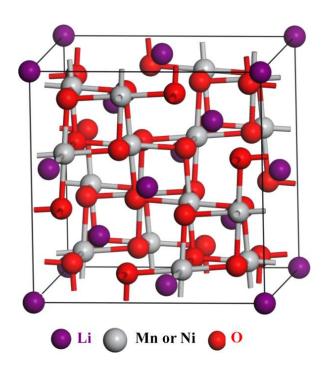
Cell extrusion

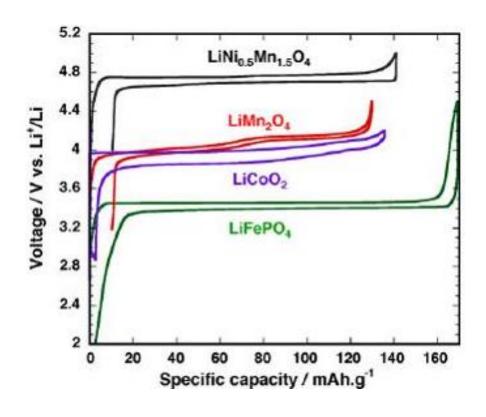
Cell acupuncture

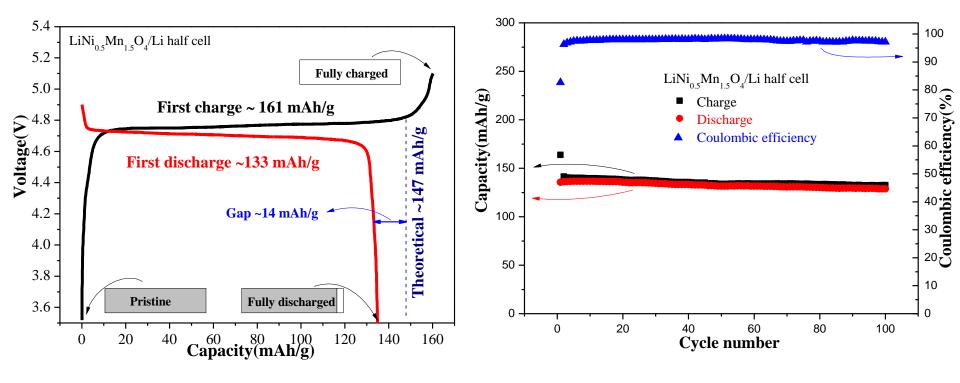
Module over-discharging

High module temperature

Module short circuit


Module extrusion




Module acupuncture

LiNi_{0.5}Mn_{1.5}O₄(LNM)

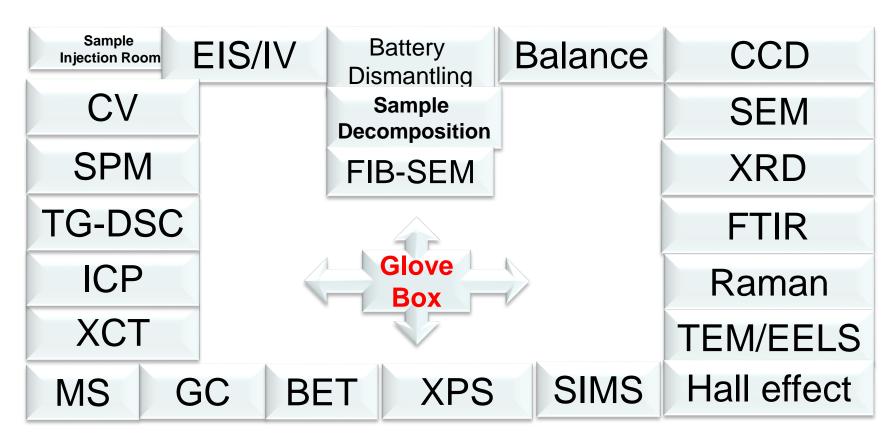
- High Voltage
- Low cost
- High safety

250Wh/Kg in 2020

Utilization ratio of lithium in typical lithium-ion cathode materials

- Available capacity of cathode materials of LiNi_{0.5}Mn_{1.5}O₄ is approximately 135mAh/g, with the utilization rate of lithium up to 100%. Equipped with a 4.7 V voltage platform (relative to lithium metal), the utilization rate of lithium can be maximized to 1 Kg Li ~ 16 KWh
- LiCoO₂ ~ 7 KWh,
- LiMn₂O₄ ~ 11 KWh,
- LiFePO₄ ~ 12 KWh.

Power battery and its management


To improve the industrial chain of power battery, the focus should be put on strengthening the capacities in design, manufacturing and system integration Battery cell

Battery system

	· · · · · · · · · · · · · · · · · · ·				
	Material	Individual design	Battery production	Group technology	Automobile- based
R&D	Development of new materials Characterization of material properties Material production technology	Fine vehicle requirements Parts selection Design criteria Property measurement	Pilot test technology Process design Quality control Equipment development Rapid detection sorting	Mechanical connection Electrical safety Heat flux design Reliability management BMS	BMS/charging/com munication Automobile operation condition User characteristics Stagger utilization
Core technology	Material Nanometer	Transmission of material/electro-chemicals Current coupling design for heat engine	Detection Production facility automation Quality control	Mechanical electrical flow control	State predication Vehicle communication Model development Operating condition analysis
Development time	10 years	Several years	Several years	Several years	Several years

Platform for Comprehensive Analysis and Test on Battery IOP/CAS

- 1. It connects various testing equipment through glove box and sample transfer system;
- 2. It provides one-stop overall analysis on battery materials and components;
- 3. It provides in-situ and ex-situ measurements;
- 4. A platform for high-level R&D, testing, diagnosis and failure analysis;
- 5. It is used in research institutions and enterprises, etc. and open to the whole world.

Thanks