Comparison of promotion programs for new energy vehicles 新能源汽车激励政策比较

何卉,高级政策分析师 国际清洁交通委员会

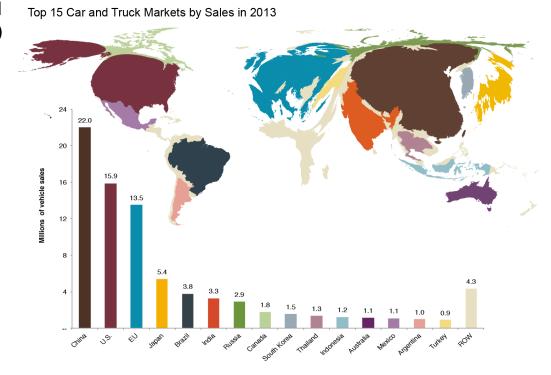
November 21, 2014

We are a nonprofit independent international research institute

ICCT简介

International Council Composed of top government regulators (~25) in major markets founded in 2001.

Non-profit Organization


ICCT incorporated to serve International Council, staff of 35 technical experts on vehicles and fuels, half with background / nationality outside US founded in 2005. Offices in DC, San Francisco and Berlin. China office coming later this year.

Board of Directors

Dan Greenbaum, head of Health Effects Institute, chair of ICCT board.

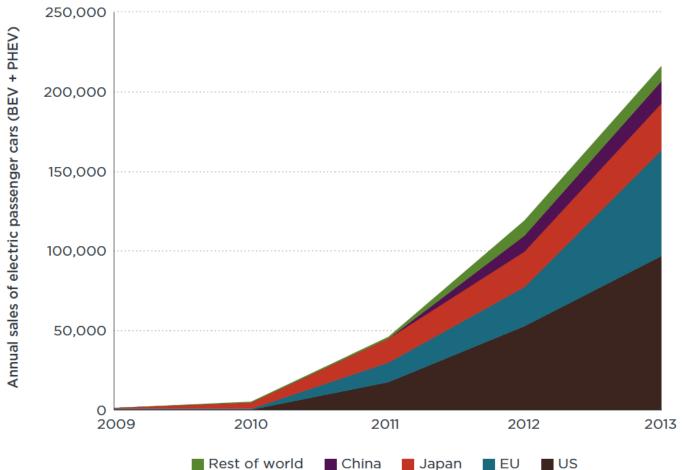
Funding

California philanthropies plus government grants and contracts.

Mission: To dramatically improve environmental performance and efficiency of motor vehicles (cars, trucks, marine, aviation) and fuels by supporting government regulatory agencies in world's top vehicle markets.

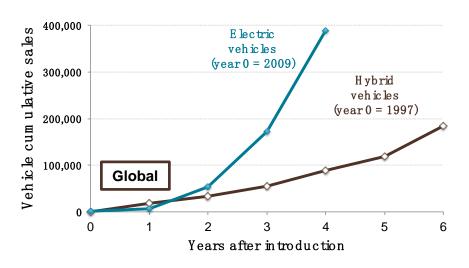
Geographic scope: China, US, EU, Japan, Brazil, India, Canada, Korea, Indonesia, Australia, Mexico plus smaller markets by request.

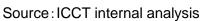
- Global trend of NEVs
- ICCT studies
 - Phase I: Global consumer incentive policy comparison
 - Phase II: US state-level incentive policy comparison
 - Next Phase
- Conclusions

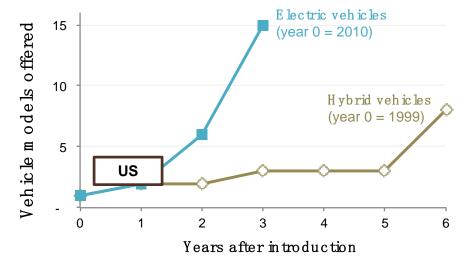


- Global trend of NEVs
- ICCT studies
 - Phase I: Global consumer incentive policy comparison
 - Phase II: US state-level incentive policy comparison
 - Next Phase
- Conclusions

NEV on the rise, globally 新能源车在全球销量增长迅速


- Global NEV sales doubled in each of the past three years
 - US, EU and Japan China are major EV markets, China is following...





NEV sales outperform hybrids 新能源车的发展势头超过当初混合动力车的情况

- EVs are still <1% of auto sales in most markets, but the EV market is growing quicker than hybrids
- More model offerings (US example)

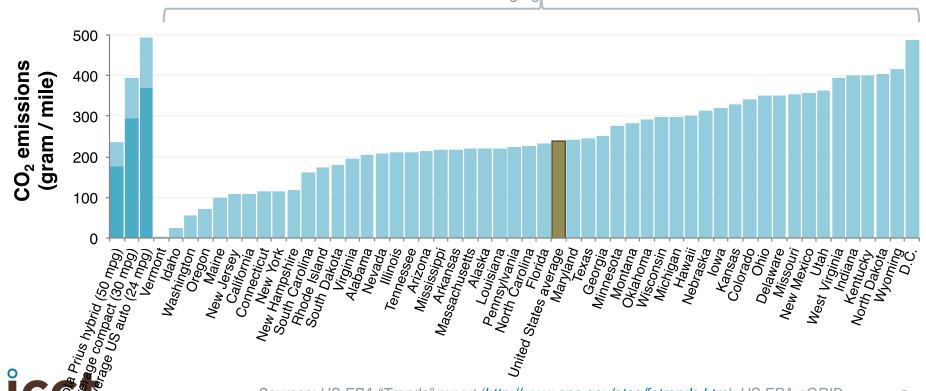
Source: Nic Lutsey, Actions in the US to accelerate electric vehicle deployment. June 4, 2014. GFEI/ICCT workshop

One strong motivation is the increasingly tightened vehicle efficiency standard

240 **─**U S Solid lines: historical perform ance Dashed lines: enacted targets 220 testcycle -C anada Dotted lines: proposed targets or targets under study → M exico 200 — E U $\operatorname{ram} \operatorname{sofC} \operatorname{O}_2\operatorname{perkilom}$ eternorm alized to NEDC 180 **J**apan 160 -China Brazil2017[3]:146 S. Korea 140 ─ India 120 → B razil 100 US 2025 [2]:103 Canada 2025:103 80 60 40 20 0 2000 2005 2010 2015 2020 2025

^[1] China's target reflects gasoline vehicles only. The target may be higher after new energy vehicles are considered.

^[2] US standards GHG standards set by EPA, which is slightly different from fueleconomy stadards due to low-GWP refrigerant credits.

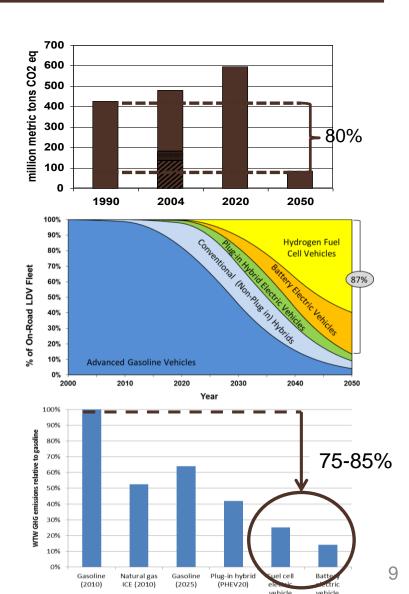

^[3] Gasoline in Brazil contains 22% of ethanol (£22), all data in the chart have been converted to gasoline (£00) equivalent

^[4] Supporting data can be found at: http://www.theicct.org/info-tools/global-passenger-vehicle-standards.

Help the US achieve GHG reduction goals

帮助美国达到其温室气体减排目标

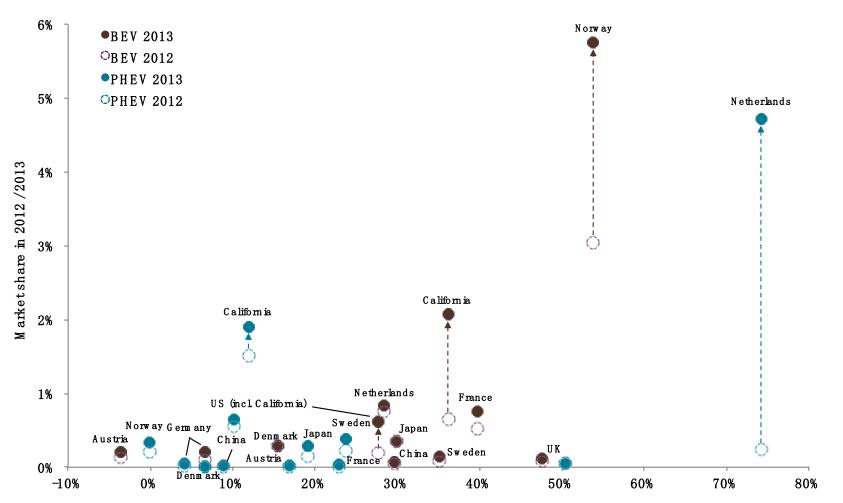
- Electric vehicles compare favorably to efficient ICE vehicles, and in many cases to efficiency hybrid vehicles on lifecycle carbon emissions
 - Even against average US electric grid (44% coal, 23% NG, 20% nuclear, 10% renew)
 - Especially on electric grids in East and West coasts with low coal, high renewable content
 Electric vehicle on average generation in US states



GHG reduction is one major driver in California

加州的主要动力来自温室气体减排

- Reduce GHG emissions
 - 1990 levels by 2020
 - 80% below 1990 levels by 2050
 - Transport sector represents 38% today
- Strategies
 - Fuel: Clean electricity and H₂ focus
 - Vehicles: Advanced Technologies, virtually all ZEVs by 2050
 - Transportation: Improved Efficiency
 - Reduce vehicle usage
 - City planning
- ZEV program



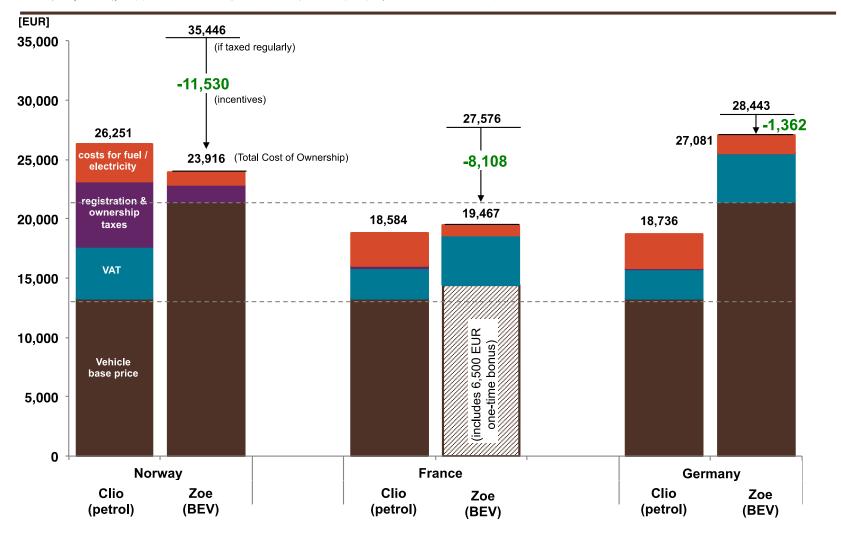
- Global trend of NEVs
- ICCT studies
 - Phase I: Global consumer incentive policy comparison
 - Phase II: US state-level incentive policy comparison
 - Next Phase
- Conclusions

Fiscal incentives driving penetration levels 财税激励拉动新能源车市场

ICCT research on NEV fiscal incentives and market penetration ICCT第一项研究着眼于国家层面财政激励和市场占有率的关系

Comparison of two pairs of passenger vehicles – a BEV and its counterpart, and a plug-in hybrid and its counterpart – in major vehicle markets in 2012 and 2013

	Renault Zoe	Renault Clio		lvo so
Vehicle type	BEV	gasoline	diesel- PHEV	diesel
Engine power [kW]	65	66	206	158
Engine displacement [cm ³]	n/a	898	2,400	2,400
Acceleration time 0-100 km/h [s]	13.5	13.0	6.1	7.7
Empty weight vehicle [kg]	1,428	1,009	1,955	1,821
Transmission type	automatic	manual	automatic	automatic
CO ₂ emission [g/km NEDC]	0	99	48	169
Fuel consumption [I/100km NEDC]	0	4.3	1.8	6.4
Electricity consumption [kWh/100km]	14.6	n/a	21.7	n/a
Battery range [km]	210	n/a	50	n/a
Vehicle base price (Germany) excl. VAT [EUR]*	21,422	13,277	51,571	43,412


Vehicle prices are adjusted for optional equipment and, for EV, include costs for battery (four-year rent cost if the battery is not purchased)

Source: Mock and Yang, Driving Electrification: A Global Comparison of Fiscal Incentive Policy For Electric Vehicles, ICCT, 2014.

Total cost of ownership (TOC)

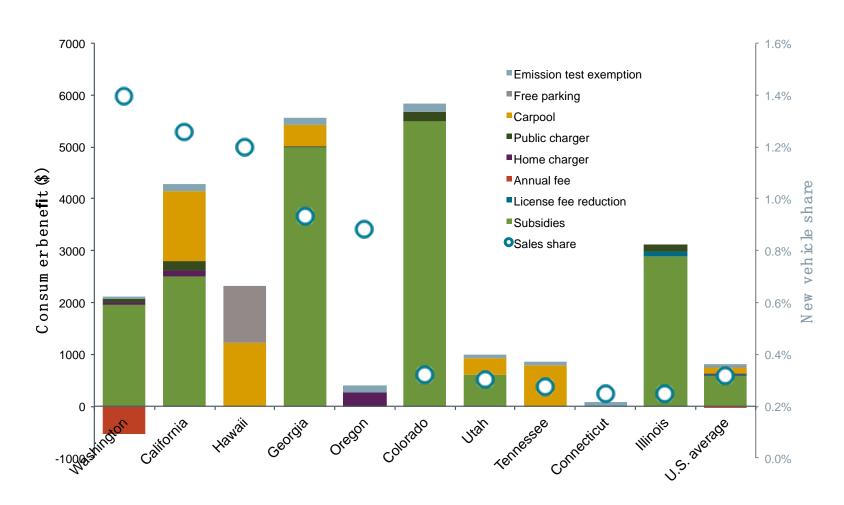
评估使用周期财税激励的总影响

- Global trend of NEVs
- ICCT studies
 - Phase I: Global consumer incentive policy comparison
 - Phase II: US state-level incentive policy comparison
 - Next Phase
- Conclusions

Many policy options from various stage at different levels

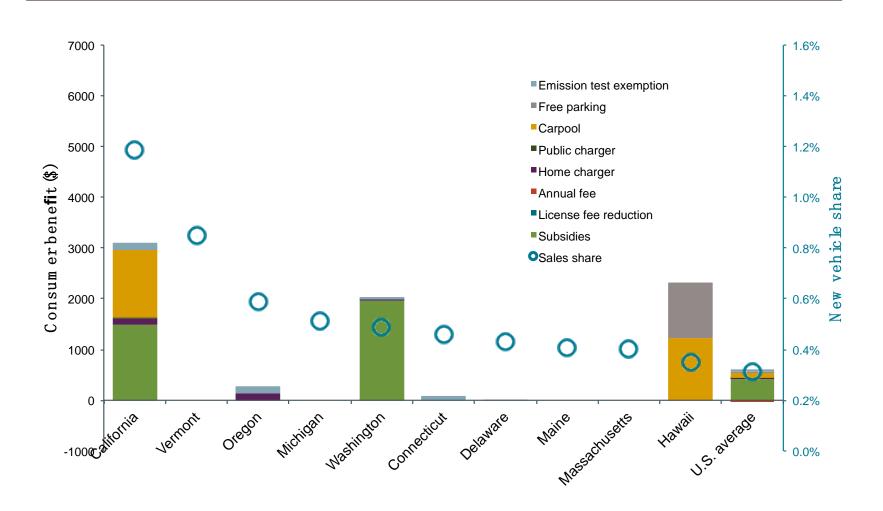
电动汽车推广政策在不同阶段不同层面有多种选择

Incentives and supporting policies to NEVs Ownership/Us Pre-production **Production** Sales Infrastructure age N N N) Vehicle efficiency R&D support to HOV lane access Subsidy or rebate **EVSE** financing Utility incentive vehicles standards N Emission test R&D support to parts Fuel disincentive ZEV programs Tax incentives exemption Free charging at R&D support to LCF standards LEZ incentive License fees charging public stations Public charger Fleet incentive (taxi Education/campaigr availability corporate) N Annual tax/fee Insurance incentive reduction N **National** Regional Education and Free parking campaign


Private

Local

ON CLEAN TRANSPORTATION


Total state benefit available to consumers for BEVs

州政府可量化的消费者激励 (纯电动车)

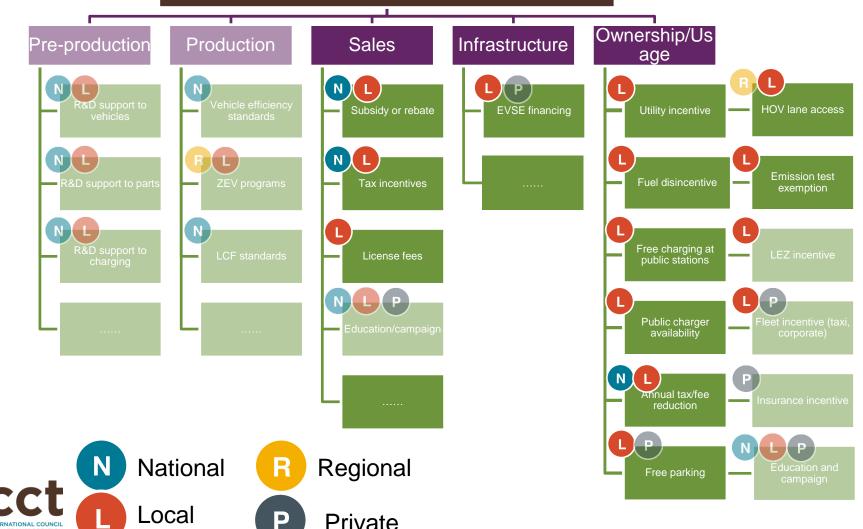
State benefit available to consumers for PHEVs 州政府可量化的消费者激励(PHEV)

The impact and cost-benefit of various policy measures 各种激励政策的影响和成本收益

Total monetary benefit available to BEV owners is significantly positively correlated with BEV sales

Variables	P-value
Log(total benefit)	0.044
Log (vehicle sales)	<0.0001
Log(% income>\$100k)	<0.0001

- Return value for public charger investment is large for BEVs but small for PHEVs due to range confidence difference
- Our cost-benefit analysis did not account for environmental, public health and climate benefits. If these are included, return values would be higher


Benefit-cost ratios	BEVs	PHEVs
Direct subsidies	1	1
HOV lanes	1.19	1.17
Public chargers	2.45	0.41
Home chargers	1	1

Many policy options from various stage at different levels

电动汽车推广政策在不同阶段不同层面有多种选择

Incentives and supporting policies to NEVs

ON CLEAN TRANSPORTATION

Some untouched but important policies

研究中未涉及的重要政策

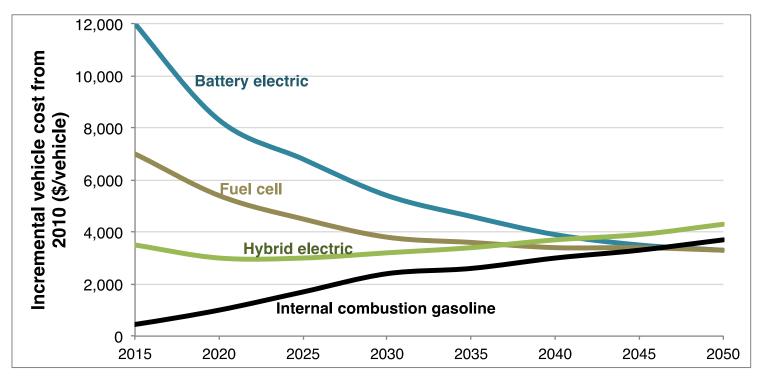
Zero Emission Vehicle program

- Requires ~15% electric vehicle share (BEV, PHEV, FCV) by 2025
- Other states following California, 8 States' goal: 3.3 million EVs by 2025
- Credit benefit from ZEV or fuel economy standards
 - Tesla made \$130 million by selling ZEV credits in 2013
- US—about \$7.5 billion investment to promote EVs from 2009-2019
 - Congressional Budget Office estimates, including tax credits, technology, electrification, and manufacturing

Federal Incentives Available to Buyers or Producers of Electric Vehicles

Incentive	Description	Budgetary Cost (Billions of dollars)
Tax Credits for New Plug-in Electric Drive Motor Vehicles	Tax credits of up to \$7,500 for buyers of new electric vehicles	2.0ª
Electric Drive Vehicle Battery and Component Manufacturing Initiative	Grants to manufacturers of batteries and other parts for electric vehicles	2.0 ^b
Transportation Electrification Initiative	Grants to establish development, demonstration, evaluation, and education projects to accelerate the introduction and use of electric vehicles	0.4 ^b
Advanced Technology Vehicles Manufacturing Program	Up to \$25 billion in direct loans to manufacturers of automobiles and automobile parts to promote the production of high-fuel-efficiency vehicles	3.1°

ZEV program: http://www.arb.ca.gov/msprog/zevprog/zevprog.htm;


California PEVC: http://www.pevcollaborative.org; C2ES: http://www.pevcollaborative.org; C2ES: http://www.pevcollaborative.org; C2ES: http://www.pevcollaborative.org; C2ES: http://www.c2es.org/us-states-regions/policy-maps/zev-program Tesla ZEV credits: http://cleantechnica.com/2014/04/23/california-ruling-means-tesla-will-get-less-eco-credits/

CBO: http://www.cbo.gov/sites/default/files/cbofiles/attachments/09-20-12-ElectricVehicles 0.pdf

Forecast: NEV price parity by 2050 先进机动车技术成本在长期会有所下降

Affordable NEVs in the future

- ICE cost goes up due to stricter requirements to emission and efficiency;
- NEV cost drops due to economy of scale, learning curve, and infrastructure readiness, with aggressive NEV promotion policies in place

- Global trend of NEVs
- ICCT studies
 - Phase I: Global consumer incentive policy comparison
 - Phase II: US state-level incentive policy comparison
 - Next Phase
- Conclusions

US city-level policy research project

下一步美国城市层面政策研究

- Deeper dive to review and analyze city-level policies in the US
- Extend the existing methodology to monetize non-fiscal policies
- Continue to explore the "unknown" type of policies
- Summary best local policy practices to accelerate NEV deployment

	Fiscal incentives				INON-tiscal henefits			EV penalty	
	EV sales rebate or tax credit	Vehicle sales tax exemption	Exemption from annual registration fee	Subsidized installation of residential charging	Exemption from emission testing	Carpool lane access	Public EV charger availability	Free parking availability	Annual fee for EVs
City A	Х			X	Х	X	X		
City B	Χ				X		X		
City C	Χ				X	X	X		
City D						X		Χ	
City E	Χ		X				X		
City F		Χ		X	X		X		X

- Global trend of NEVs
- ICCT studies
 - Phase I: Global consumer incentive policy comparison
 - Phase II: US state-level incentive policy comparison
 - Next Phase
- Conclusions

Conclusions

总结

- At present, national level policies such as stringent vehicle fuel economy standards are necessary but not sufficient to drive NEVs into marketplace in significant numbers
- State-level incentives are playing a significant early role in reducing the effective cost of ownership and driving electric vehicle sales
- Both fiscal and non-fiscal measures (HOV lanes, charging stations, etc) are playing important roles in driving NEV sales; sometimes the latter can be more effective
- Cost-benefit of various incentive policies is valuable information for policy making
- Our understanding of international best practices for NEV policies is evolving; more research needed.
- Consideration of upstream emissions must <u>eventually</u> be taken into account to address local air pollution and climate change
- In the long-term, we can expect BEVs (and FCVs) to become cost competitive with internal combustion engines, thus eliminating the need for fiscal subsidies

Research team

Peter Mock Berlin office director Stephanie Searle Senior Policy Analyst

Zifei Yang Analyst

Nic Lutsey Program director

Other resources

相关资源

- Two reports
 - http://www.theicct.org/driving-electrification-global-comparison-fiscal-policy-electric-vehicles
 - http://www.theicct.org/evaluation-state-level-us-electric-vehicle-incentives
- Global EV grid emissions
 - http://www.theicct.org/calculating-electric-drive-vehicle-ghg-emissions
- Comparison of companies, technology, CO₂ emissions in EU countries
 - http://eupocketbook.theicct.org
- US EV grid emissions and long-term vehicle policy
 - http://www.sciencedirect.com/science/article/pii/S0301421512001553
- EV grid integration in US, China, Europe (MJ Bradley)
 - http://www.theicct.org/electric-vehicle-grid-integration-us-europe-and-china
- Japan hybrid vehicle market breakthrough
 - http://www.theicct.org/blogs/staff/hybrids-break-through-japan-auto-market
- Long-term light-duty vehicle fleet transition modeling to electric vehicles (Greene/ORNL)
 - http://www.theicct.org/analyzing-transition-electric-drive-california
- Electric heavy-duty vehicles (DLR, CE-Delft)
 - http://www.theicct.org/zero-emission-trucks
- Associated blogs, webinars
 - http://www.theicct.org/blogs/staff/if-subsidies-are-no-panacea-how-incentivize-electric-vehicles-china-cn
 - http://www.theicct.org/blogs/staff/if-subsidies-are-no-panacea-how-incentivize-electric-vehicles-china
 - http://www.theicct.org/blogs/staff/show-vehicles-or-all-differing-electric-vehicle-strategies-emerge
 - http://about.bgov.com/events/the-state-of-the-u-s-electric-vehicle-market-webinar/
 - http://www.theicct.org/blogs/staff/dont-count-out-hydrogen-fuel-cell-electric-vehicles
 - http://www.theicct.org/blogs/staff/electric-vehicles-rise-california

Thank You!

hui@theicct.org www.theicct.org

