碳达峰碳中和目标下的抵销机制设计

Design of Offsetting Mechanism under Carbon Peaking and Carbon Neutrality Goals

清华大学
2023.2.15
Tsinghua University
February 15, 2023
ABOUT THE AUTHORS

Duan Maosheng, Professor, Tsinghua University
Wang Yu, Associate Professor, Tsinghua University
Ma Guosong, PhD student, Tsinghua University

ACKNOWLEDGEMENT

This report is a product of Tsinghua University and is funded by Energy Foundation China.
目录

摘要 .. 1

1 引言 .. 3
 1.1 抵销机制成为各层级实现双碳目标的重要手段 3
 1.2 抵销机制设计不完善，相关研究匮乏 ... 5
 1.3 本研究主要内容 ... 7

2 与碳减排相关的绿色权益交易机制概览 .. 9
 2.1 碳信用机制 ... 10
 2.1.1 碳信用机制概述 ... 10
 2.1.2 对减排指标的额外性要求 ... 12
 2.1.3 中国温室气体自愿减排交易机制简介 .. 16
 2.2 用能权交易 ... 18
 2.2.1 基本情况 .. 18
 2.2.2 用能权交易试点实施进展 ... 19
 2.3 绿色电力证书交易机制 ... 21
 2.3.1 基本情况 .. 21
 2.3.2 绿证核发及交易规则 ... 22
 2.4 绿色电力交易机制 .. 23
 2.4.1 基本情况 .. 23
 2.4.2 绿色电力交易方式 .. 24
 2.4.3 绿电交易与绿证的联系 ... 24
 2.5 抵销机制的优势及存在的主要问题 .. 25
 2.5.1 抵销机制在实现双碳目标中的优势 ... 25
 2.5.2 抵销机制现存的主要问题 ... 26

3 绿色权益交易机制可能导致的双重计算风险 .. 29
 3.1 同类绿色权益交易机制中的双重计算风险 .. 29
 3.1.1 碳信用机制下减排指标的双重签发和双重使用 29
 3.1.2 绿证签发中的双重计算风险 ... 31
 3.1.3 绿色电力排放核算中的双重计算风险 .. 32
 3.2 绿色权益交易机制交叉重叠导致的双重计算风险 34
 3.2.1 碳排放权交易与碳信用机制 .. 35
 3.2.2 用能权交易与碳排放权交易 .. 38
 3.2.3 用能权交易与碳信用机制 ... 39
3.2.4 绿电、绿证交易与碳信用机制 .. 40
3.2.5 绿电交易与碳排放权交易 .. 41
3.3 减排成果双重计算风险量化评估案例 42

4 绿色权益交易在各层级双碳目标实现中的作用及双重计算风险 . 46
 4.1 地方层面 .. 46
 4.2 企业层面 .. 48
 4.3 活动层面 .. 52
 4.4 产品层面 .. 54

5 双碳目标下的抵销机制设计政策建议 .. 57
 5.1 优化机制设计，避免同类绿色权益交易机制中的双重计算 57
 5.1.1 打通信息交换渠道，避免同类机制下的双重签发 ... 57
 5.1.2 对减排指标进行持续追踪、报告与监督 58
 5.1.3 完善绿色电力相关的排放核算规则 59
 5.2 加强协调衔接，避免多种绿色权益交易机制交叉重叠 61
 5.2.1 明确各种绿色权益交易机制的定位与边界 61
 5.2.2 建立统一的管理平台，实现数据互通 64
 5.3 完善制度建设，避免不同层级主体重复计算减排成果 65
 5.3.1 明确各层级减排目标考核规则，保证层级内部核算完整性 ... 65
 5.3.2 要求市场主体承诺没有双重计算，加强信息披露 ... 66

参考文献 .. 68
摘要

我国碳达峰碳中和目标提出以来，各个省份、地区及众多相关行业、企业、活动等纷纷提出减排目标和承诺，并开始积极规划制定各自的碳达峰碳中和行动方案。抵销机制允许相关方使用多种绿色权益交易机制下的减排成果完成其碳减排承诺，可以降低实现既定碳减排目标的成本。因此，很多主体表示将使用外部减排成果作为完成减排目标的重要手段之一。

抵销机制将在我国各个层面碳达峰碳中和目标的实现中扮演非常重要的角色，但目前国家主管部门尚无关于各个区域、行业、企业、活动等使用减排成果的系统性规定。如果相关机制规则设计不当，可能会导致巨大的环境风险，特别是减排成果的双重计算，即一个减排成果被用于完成两个或者两个以上的减排目标，从而影响减排目标的环境完整性。目前，我国实施了碳减排信用机制、绿电交易、绿证交易、用能权交易等多种与碳减排相关的绿色权益交易机制，机制设计或核算规则的不完善可能导致减排指标签发、转让和使用过程中的减排量双重计算。更严重的问题在于，多种绿色权益交易机制的覆盖范围、管控对象、政策目标等存在交叉重叠，但目前的机制设计中没有考虑不同政策机制之间的交互影响和协调问题，这极有可能导致同一个减排活动同时参与多种市场机制，进而导致减排成果的双重计算。此外，由于地方、企业、活动、产品等多个层级的主体均使用抵销机制完成减排目标，减排成果双重计算的风险可能会进一步加剧。

针对上述问题，本研究对双碳目标下抵销机制实施中可能存在的
双重计算风险进行了识别，详细分析了双重计算可能发生的不同场景及机理，针对识别出的各种双重计算风险，提出了相应的应对措施建议，以确保在通过抵销机制降低减排成本、促进我国碳达峰碳中和目标实现的同时，避免抵销机制使用中可能存在的双重计算等负面影响，为制定科学有效的政策制定提供理论支撑。
1 引言

1.1 抵销机制成为各层级实现双碳目标的重要手段

全球气候变化已经成为人类发展面临的共同挑战，中国积极参与全球气候治理，应对气候变化。2020 年 9 月 22 日，我国宣布将提高国家自主贡献（NDC）力度，采取更加有力的政策和措施，二氧化碳排放力争于 2030 年前达到峰值，努力争取 2060 年前实现碳中和。“双碳”目标的提出彰显了中国积极应对气候变化的雄心，推动了全球可持续发展治理体系的建设，也将从根本上促进中国能源和产业结构的变革，为中国经济高质量增长注入新的活力。

我国碳达峰与碳中和目标提出以来，各个省（区、市）开始积极着手编制各自的碳排放达峰行动方案；众多的行业、企业也根据国家总体目标、主管部门要求和行业自身特点，启动编制各自的碳达峰碳中和目标、规划和行动方案。同时，许多活动和产品也提出要实现碳中和。碳达峰碳中和目标的实现机制诸多，既有专项规划、碳减排约束性目标等行政命令式手段，也有碳信用机制、绿色电力交易、绿证交易、用能权交易等市场化的绿色权益交易机制。

在探索与制定碳达峰碳中和行动方案的过程中，多个主体表示除自主的减排行动外，希望通过使用抵销机制借助外部的减排努力实现自身减排目标。在本研究中，我们将抵销机制定义为允许各层级主体使用碳减排信用、绿色电力、绿色电力证书、用能权指标等多种绿色权益交易机制下的外部减排成果抵销其部分温室气体排放以实现减排目标。越来越多的地区、行业、企业明确宣布，将使用来自外部的
减排指标抵销其部分排放，协助实现其碳达峰或碳中和目标；还有很多主体虽然没有给出关于是否使用抵销机制的确切信息，但很可能在未来会宣布同样的措施。

抵销机制允许相关方使用低成本的减排指标完成其碳减排承诺，因而可以降低实现既定减排目标的成本，国际和国内对相关的抵销机制规则都高度关注。《京都议定书》即允许发达国家使用来自境外的减排指标完成其减排义务。以《京都议定书》设立的清洁发展机制为例，截至2022年12月，已经签发的减排指标CER已超过22亿吨二氧化碳当量。《巴黎协定》也允许缔约方使用来自境外的减排指标完成其NDC减排目标，《协定》第6条为缔约方提供了两种市场机制，分别是第6.2条确立的“合作方法”和第6.4条确立的“第6.4条机制”。很多宣布了碳中和目标的发达国家，明确了将借助于来自境外的减排指标来协助其完成目标。

碳排放权交易体系（ETS）一般也允许被管控重点排放单位使用体系外产生的减排指标履行其在体系下的配额清缴义务，我国的全国和试点ETS均是如此。以已经开始正式交易的全国ETS为例，根据生态环境部发布的《碳排放权交易管理办法（试行）》，重点排放单位可以使用不超过5%的核证自愿减排量来完成他们的配额清缴义务。

抵销机制的使用，一定程度上会降低各层级主体实现其碳达峰碳中和目标的成本，从而有助于其提出更加有雄心的目标，但是，在全国和全球均致力于实现碳中和的背景下，抵销机制的使用可能会带来意想不到的负面影响，尤其是减排成果双重计算问题，也就是一个减
排指标被用于完成两个或者两个以上的减排目标，从而影响减排目标的环境完整性。目前在我国多种绿色权益交易机制并存，地方、企业、活动、产品等不同层级主体均使用抵销指标的情况下，不完善的抵销机制设计可能导致巨大的减排成果双重计算风险。

1.2 抵销机制设计不完善，相关研究匮乏

目前，我国全国碳市场和大多数的试点碳市场将允许重点排放单位使用的抵销指标上限都定在 5%，国内碳市场对抵销指标的需求高达数吨二氧化碳当量。我国绿色电力交易市场启动以来，发展态势强劲，多个省份有序开展绿电交易，企业购买绿电的意愿和需求也越来越强烈。同时，国家在碳达峰碳中和相关工作部署中，多次提出建设全国用能权交易市场，完善用能权有偿使用和交易制度，将其列为实现双碳目标的重要政策保障。由此可见，抵销机制将在我国各个层面碳达峰碳中和目标的实现过程中扮演非常重要的角色，如果相关机制规则设计不合理、不完善，可能导致巨大的环境风险。但目前除了在各个单个碳市场中对抵销指标的使用有相对明确的规定外，国家主管部门尚无关于各个区域、行业、企业和活动等使用抵销机制的系统性规定。该问题的解决，涉及气候和能源等多个主管部门，需要对碳减排和节能、可再生能源发展等多个不同政策目标及相应市场机制进行协调。

在研究层面，抵销机制设计中潜在的问题和风险已经得到国内外一些学者的关注和讨论。国外的相关研究很大一部分集中在《巴黎协定》等国际义务完成过程中减排指标跨境转移可能导致的风险。例如，
Schneider等6系统性综述了避免减排成果双重计算对顺利实现《巴黎协定》目标的必要性，分析了目前解决双重计算问题面临的主要困境。Kreibich等7梳理了各国已提交的NDC的主要类型，分析了不同贡献目标类型与减排成果转让的兼容性以及潜在的不同程度的双重计算风险。Schneider等8、9、Kreibich7等分析了双重计算可能发生的机理和形式。在避免双重计算的应对措施方面，现有研究从减排指标核算规则制定、减排指标签署机制设计、减排单位跟踪和监督等角度提出了解决双重计算问题的政策建议8-10。此外，碳信用机制设计不完善导致的双重计算11-13、使用不同范围二排放核算方法导致的双重计算14、绿证和碳信用之间交叉重叠可能存在的双重计算15,16、国际航空碳抵消与NDC之间的双重计算风险17等问题也在一些研究中有所探讨，但研究数量还很少，多数研究仅指出双重计算风险的存在，缺乏对其产生机理和改进机制的深入分析。虽然国内外抵销机制设计中存在一定的共性问题，国外相关研究能够为我国抵销机制设计提供一定的参考价值，但由于我国市场机制起步较晚，多种绿色权益交易机制并存且由不同的主管部门负责建设管理，在机制设计中面临的问题可能更加复杂。

随着双碳工作的深入推进，国内一些研究也开始关注绿色权益交易机制协调以及抵销机制设计的相关问题，但总体来说相关研究仍十分匮乏。张森林18通过梳理我国电力市场和碳市场建设情况和现存问题，分析了电力市场与碳市场之间的关系，提出应强化顶层设计，做好电-碳市场的有效衔接与协同。李梓仟等19概述了我国碳市场、可
再生能源消纳保障机制和绿证交易的实施现状，提出基于绿色电力证书，探索可再生能源发电企业参与碳市场抵销机制以促进碳交易与配额制、绿证衔接的建议。臧宁宁 20 对绿电交易、绿证交易和碳信用机制进行了梳理分析，提出了推动绿电、绿证和碳信用机制协同建设的政策建议。然而，以上研究缺乏对各类绿色权益交易机制的系统性分析，并未对抵销机制设计中存在的问题，尤其是减排成果双重计算的潜在风险及其形成机理展开深入研究，也尚未形成具有可操作性的协调设计方案。总的来说，目前还没有针对我国碳达峰碳中和目标下，各层级主体使用抵销机制可能存在的风险以及如何优化抵销机制设计相关的综合性研究。

1.3 本研究主要内容

通过使用抵销机制助力双碳目标实现需要稳健完善的机制设计作为保障，避免减排成果双重计算。针对建立健全机制体系的迫切需求和当前研究的空缺，本研究首先梳理了我国与碳排放相关的主要绿色权益交易机制，识别了双碳目标下绿色权益交易机制设计和使用中存在的问题，特别是减排成果的双重计算。围绕双重计算这一核心问题，从同类绿色权益交易机制中减排量的双重计算、绿色权益交易机制交叉重叠导致的双重计算、各层级主体同时使用抵销机制时存在的双重计算风险三个维度深入分析了发生双重计算的可能情况及产生原因。最后，针对识别出的双重计算风险及其机理，提出避免双重计算的政策建议。

在我国大力推进二氧化碳排放达峰和碳中和目标实现的进程中，
抵销机制将发挥不可替代的重要作用，合理有效的机制设计是确保其持续健康运行的基础和保障。本研究通过对我国各种绿色权益交易机制的系统梳理和深入分析，识别当前抵销机制相关制度和规定下可能存在的减排成果双重计算风险，有助于厘清多种绿色权益交易机制之间的内在联系，并据此优化和完善政策设计，避免不同机制之间的冲突，发挥政策合力。全国各个层次对外部减排成果的需求日益增加，各种绿色权益交易日益活跃，在识别分析双重计算问题的基础上，本研究提出我国碳达峰碳中和背景下的抵销机制设计建议，以确保在通过抵销机制降低减排成本、促进我国碳达峰碳中和目标实现的同时，避免抵销机制使用中可能存在的双重计算等负面影响，有助于避免巨大的环境风险，确保减排成果的环境完整性，为制定科学、准确、可行的碳中和政策提供理论支撑。
2 与碳减排相关的绿色权益交易机制概览

中国实施了碳信用机制（以温室气体自愿减排交易机制为代表）、用能权交易机制、绿色电力交易机制、绿色电力证书交易机制等多种与碳排放相关的绿色权益交易机制（表 2-1），以市场化手段实现促进可再生能源发展、能源效率提升和温室气体减排等多重目标。本章梳理了上述绿色权益交易机制的基本情况，分析了绿色权益交易机制在我国实现双碳目标进程中发挥的优势及现存的主要问题。

<table>
<thead>
<tr>
<th>机制</th>
<th>启动时间</th>
<th>主管部门</th>
<th>参与主体</th>
<th>交易标的</th>
<th>覆盖范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>温室气体自愿减排交易机制</td>
<td>2015年</td>
<td>生态环境部</td>
<td>企业、团体和个人</td>
<td>核证自愿减排量（CCER）</td>
<td>全国</td>
</tr>
<tr>
<td>用能权交易</td>
<td>2017年</td>
<td>国家发改委</td>
<td>试点地区用能单位特别是重点用能单位，或其他能源消耗总量和强度“双控”目标责任主体</td>
<td>用能权指标</td>
<td>浙江、福建、四川、河南试点</td>
</tr>
<tr>
<td>绿色电力证书交易</td>
<td>2017年</td>
<td>国家发改委、财政部、国家能源局</td>
<td>出售方主要为可再生能源发电企业，消费者包括各级政府机关、企事业单位、社会机构和个人</td>
<td>绿色电力证书</td>
<td>全国</td>
</tr>
<tr>
<td>绿色电力交易</td>
<td>2021年</td>
<td>国家发改委、国家能源局</td>
<td>电网企业、风电和光伏发电企业、电力用户和售电公司；初期，电力用户主要选取具有绿色电力消费需求的用电企业，随着全社会绿色电力消费意识的形成，电力用户范围可逐步扩大，并且逐步引导电动汽车、储能等新兴市场主体参与绿色电力交易</td>
<td>绿色电力,初期主要为风电和光伏发电企业上网电量,条件成熟时,可逐步扩大至符合条件的水电</td>
<td>大多数省份,但受电力交易机制约束</td>
</tr>
</tbody>
</table>

表 2-1 国内与碳减排相关的代表性绿色权益交易机制
2.1 碳信用机制

2.1.1 碳信用机制概述

碳排放权交易体系未覆盖的项目通过开展减排活动，在常规情景之外产生的减排量或增加的碳封存量可以申请获得减排指标（碳信用）。

减排指标是一种由政府或独立认证机构认证的可转让工具，一单位减排指标代表一吨二氧化碳当量的温室气体减排量。

减排指标的交易可以将气候效益从一个主体转移给另一个主体，这意味着一个主体产生的减排量可以用于抵销另一个主体的排放。减排指标既可以用于强制市场，也可以用于自愿市场。强制市场将减排指标作为碳排放权交易机制下控排主体抵销自身排放量，完成其减排履约义务的一种工具：碳市场抵销机制的存在允许碳市场管控企业的排放总量超过总量控制目标，但由于超出的排放量被减排指标所抵销，因此总体排放结果不变。在自愿市场中，企业、组织或个人为了展现其良好的社会形象，以社会责任为出发点，通过购买使用减排指标自愿抵销其碳排放。

根据减排指标的产生方式和碳信用机制的管理方式，可以将碳信用机制分为国际机制和区域、国家、地方机制两类。表 2-2 对部分代表性碳信用机制进行了总结梳理。

<table>
<thead>
<tr>
<th>机制名称</th>
<th>类型</th>
<th>管理机构</th>
<th>建立时间</th>
<th>减排指标</th>
<th>覆盖区域范围</th>
</tr>
</thead>
</table>
| 清洁发展 | 《京都议定 CDM 执行》 1997 年 | 核证减排量 | 《京都议
<table>
<thead>
<tr>
<th>机制（CDM）</th>
<th>《京都议定书》下机制</th>
<th>理事会</th>
<th>（CER）</th>
<th>《京都议定书》发展中国家缔约方</th>
</tr>
</thead>
<tbody>
<tr>
<td>联合履约机制（JI）</td>
<td>《京都议定书》下机制</td>
<td>JI监督委员会</td>
<td>减排单位（ERU）</td>
<td>《京都议定书》发达国家缔约方</td>
</tr>
<tr>
<td>合作方法</td>
<td>《巴黎协定》下机制</td>
<td>气候变化秘书处</td>
<td>国际转让的减排成果</td>
<td>《巴黎协定》缔约方</td>
</tr>
<tr>
<td>6.4条机制</td>
<td>《巴黎协定》下机制</td>
<td>第6.4条监督委员会</td>
<td>2015年</td>
<td>6.4ER</td>
</tr>
<tr>
<td>金色标准（GS）</td>
<td>独立机制</td>
<td>黄金标准秘书处</td>
<td>2003年</td>
<td>自愿核证减排量（VER）</td>
</tr>
<tr>
<td>自愿碳减排核证标准（VCS）</td>
<td>独立机制</td>
<td>Verra</td>
<td>2005年</td>
<td>自愿碳减排单位（VCU）</td>
</tr>
<tr>
<td>中国温室气体自愿减排机制</td>
<td>中国全国体系</td>
<td>生态环境部</td>
<td>2012年</td>
<td>国家核证自愿减排量（CCER）</td>
</tr>
<tr>
<td>北京林业碳汇抵销机制</td>
<td>中国地方性体系</td>
<td>北京市生态环境局</td>
<td>2014年</td>
<td>北京林业碳汇核证减排量（BFCER）</td>
</tr>
<tr>
<td>广东碳普惠抵销信用机制</td>
<td>中国地方性体系</td>
<td>广东省生态环境厅</td>
<td>2015年</td>
<td>碳普惠核证减排量（PHCER）</td>
</tr>
<tr>
<td>熊猫标准</td>
<td>其他国内体系</td>
<td>北京环境交易所</td>
<td>2009年</td>
<td>熊猫标准信用额</td>
</tr>
</tbody>
</table>

部分资料来源：世界银行《2020年碳定价机制现状和趋势》报告

国际碳信用机制可以进一步划分为联合国下机制和其他独立碳信用机制。联合国下机制是由国际气候条约制约的机制，管理机构为所有参与国制定明确规则，例如《京都议定书》下的清洁发展机制（CDM）和联合履约机制（JI），以及《巴黎协定》下的合作方法和6.4条机制。其他独立碳信用机制是不受任何国家法规或国际条约约束的机制，由私人和独立的第三方组织（通常是非政府组织）管理，如黄金标准（Gold Standard）、核证减排标准（Verified Carbon Standard）等。
区域、国家和地方碳信用机制是由各自辖区内立法机构管辖的机制，通常由区域、国家或地方各级政府针对特定司法管辖区制定规则进行管理。就我国而言，区域、国家和地方抵销机制包括中国全国体系（即中国温室气体自愿减排机制）、中国地方性体系（如各试点碳市场抵销机制、广东碳普惠抵销信用机制等）和其他国内体系（如熊猫标准）。

2.1.2 对减排指标的额外性要求

在1997年通过的《京都议定书》中，额外性这一概念首次被应用于气候变化减排行动。额外性是评估减排指标质量的重要标准之一，是否符合额外性要求事关减排量的真实性及减排的实际效果。保持所有其他因素不变的情况下，如果一项减排活动在没有抵销机制的情况下无法实施，则该活动被视为具有额外性。

抵销机制的使用允许控排主体的排放量超出总量控制目标设置的排放上限，但如果减排指标不符合额外性要求，即减排指标对应的减排量无论如何都会产生，就会导致温室气体排放总量的增加，直接影响到减排行动的最终效果。

图 2-1 CDM 中的额外性论证步骤
清洁发展机制额外性论证与评价工具规范了进行额外性论证时应遵循的5个步骤框架，图2-1所示，中国温室气体自愿减排机制方法学中的额外性论证过程与之类似。

（1）步骤0：论证项目是否是首个此类项目。本步骤是可选的，如果不选择本步骤，则该项目不是首个此类项目。如果一个项目是首个此类项目，则该项目被认为是额外的。

（2）步骤1：识别符合现有法律法规的项目的替代方案。首先，需要识别出能够提供和项目所提供的服务相同服务的替代方案，包括该项目不作为CDM项目执行的情况、其他可行的情况及现状的继续（适用的情况下）。如果识别出的替代方案技术上不可行或不符合强制性法律法规的要求，则在本步骤应被排除。本步骤的结果就是识别出技术上可行同时又符合相关强制性法律法规要求的能提供和项目相同服务的替代方案。本步骤结束后，项目参与者可以选择进入步骤2或步骤3，或者步骤2和步骤3同时进行。

（3）步骤2：投资分析，分析项目是否是财务上最有吸引力的投资选择；或者在没有CDM方面的收益时，经济上或者财务上是否可行。工具给出了三种分析方法，即简单成本分析法、投资比较分析法和投资基准分析法。如果通过上述分析，无法证明项目不是最有财务吸引力的(使用投资比较分析时)或者有财务吸引力的(使用投资基准分析时)，除非项目能够通过步骤3的分析，否则项目就不是额外的。

（4）步骤3：障碍分析，分析是否存在一种障碍，其只阻碍项目的实施，而不阻碍至少一种替代方案的实施。同时，也必须证明开发
CDM 项目能够消除该障碍。方法学中给出的具体障碍的例子包括投资障碍(也即缺少投资资金)和技术障碍(如缺少技术人员、基础设施等)等。如果项目通过了本步骤的障碍分析，则项目参与方应进入步骤 4 继续分析。如果项目没有通过本步骤的障碍分析，则项目就不是额外的。

(5) 步骤 4: 普遍实践分析，分析该项目类型在多大程度上已经在相关的地区和行业得到了推广，是进一步验证前面投资分析或者障碍分析的结论。如果项目已经是一种普遍实践，则项目就不是额外的; 否则，项目就具有额外性。

专栏 《巴黎协定》市场机制背景下的额外性要求

为协助缔约方实现其国家自主贡献并不断提高减排行动力度，《巴黎协定》(PA) 第 6 条为缔约方提供了两种市场机制。格拉斯哥 COP26 大会上通过的第 6 条决议为国际市场合作制定了严格的规定，涉及制定强有力的信用基准、额外性判定、监测和量化减排成果等。
第 6.2 条决议文本规定，由合作方法产生的所有国际转让减排成果（ITMOs）必须是额外的，但没有规定确定额外性的方法。第 6.4 条决议文本规定，要确定一项减排活动的额外性，必须证明“如果没有市场机制的激励措施，该活动就不会发生，考虑到包括立法在内的所有相关国家政策，所代表的减排是超过法律法规要求的任何减排，并采取保守的方法，避免锁定排放水平、技术和碳密集型实践”。

自《巴黎协定》实施以来，特别是第 6 条实施细则逐 渐明确后，越来越多的碳信用机制承诺将其业务规则与 PA 保持一致，以确保产生的碳信用的环境完整性。

2021 年，黄金标准（GS）成立了一个与 PA 保持一致的专家咨询小组，对标准的规则、要求和程序进行必要的更改，以确保与 PA 的要求，特别是第 6 条的要求保持高度一致性。GS 在 2021 年更新的减排活动资格标准认为只有某些类型的可再生能源项目活动是额外的，这些项目必须连接到位于最不 发达国家或小岛屿发展中国家或地区的电网，或位于可再生能源技术渗透率低于电网总装机容量 5% 的中低收入国家。

VCS 最近的更新之一包括引入了用于额外性确定的动态绩效标准的新要求，其中需要考虑一个部门或活动类型的实时绩效变化。Verra 修改了 VCS 项目的范围，并将某些可再生能源项目活动从 VCS 未来的覆盖范围中删除。目前，只有位于最不发达国家或小岛屿发展中国家的小规模并网水电项目以及小型和大型并网地热、风能和太阳能项目才符合 VCS 计划。

联合信用签发与交易机制（JCM）是日本发起的一项基于项目的双边碳信用机制。在该机制下，与日本政府签署了双边协议的伙伴国主导并实施减排项目，JCM 根据减排成果为减排项目签发 JCM 碳信用。自 PA 通过以来，JCM 一直努力与第 6.2 条机制规则保持一致。如第 6.2 条要求，JCM 要求减排是真实和可验证的。根据 JCM 机制指南，项目基准线必须低于常规情景 BAU，并使用经批准的 JCM 方法进行量化。在额外性确定方面，JCM 使用类似于方法学正面清单的“合格标准”。
2.1.3 中国温室气体自愿减排交易机制简介

温室气体自愿减排交易发展历程与法规体系

2012 年 6 月，国家发改委颁布了《温室气体自愿减排交易管理暂行办法》，对基于项目的温室气体自愿减排交易规则进行了详细规定，明确了管理范围和主管部门，构建了交易原则等基本原则，公布了统一的方法学、审定和核证减排量标准、合法的交易机构和第三方审定核证机构等，这是我国温室气体自愿减排交易最初的基石。

中国自愿减排交易体系下的减排量称为“国家核证自愿减排量（CCER）”，是指对我国境内可再生能源、林业碳汇、甲烷利用等项目的温室气体减排效果进行量化核证，并在国家温室气体自愿减排交易注册登记系统中登记的温室气体减排量。2015 年 1 月，国家自愿减排交易注册登记系统建成并启动运行，注册登记系统既是温室气体自愿减排项目产生的 CCER 确权和管理的工具，也是 CCER 交易监管工具，主要用于 CCER 的注册与登记管理，包括开户和账户管理，详细记录 CCER 签发、持有、转移、履约清缴、注销等流转全过程及其权属变化的信息。

我国七个试点地区碳市场均允许重点排放单位使用 CCER 抵销部分碳排放配额的清缴，允许抵销的最高比例为 5%-10%不等。2015 年 3 月，广州碳排放权交易所完成了全国首单 CCER 线上交易，交易量为 20 万 tCO₂e、交易额 200 万元，拉开了我国温室气体自愿减排交易的帷幕。各试点碳市场还基于 CCER 开发了一系列碳金融衍生品，例如，北京、上海、广东和湖北碳市场开展了基于 CCER 的质押
2017年3月，国家发改委发布公告暂停受理温室气体自愿减排交易备案申请。截至2017年3月，我国CCER累计审定项目达到2871个，备案项目861个，减排量备案的项目中挂网公示254个，审定项目中，风电、光伏发电、垃圾焚烧项目占比最高，除此之外，生物质发电、废物处理、林业碳汇等项目也具有一定规模。温室气体自愿减排交易备案申请暂缓受理后，已备案的CCER仍可参与交易。截至2021年9月30日，我国CCER累计成交量超过3.34亿吨CO₂e，成交额逾29.51亿元。

生态环境部于2020年12月31日发布的《碳排放权交易管理办法（试行）》规定重点排放单位每年可以使用国家核证自愿减排量抵销碳排放配额的清缴，抵销比例不得超过应清缴碳排放配额的5%。用于抵销的国家核证自愿减排量，不得来自纳入全国碳排放权交易市场配额管理的减排项目。2021年3月发布的《北京市关于构建现代环境治理体系的实施方案》指出，北京将承建全国温室气体自愿减排管理和交易中心，但截至2022年底，我国温室气体自愿减排交易机制尚未重启。

CCER开发及审定流程

CCER申请、交易及抵销流程要经历以下阶段：自愿减排项目首先应该属于国家规定的项目类别，并符合经过备案的方法学。申请备案的项目在申请前应由经备案的审定机构审定，并出具项目审定报告。
审定完成后，向相关国家主管部门申请自愿减排项目备案，通过评估的项目获得备案并在国家登记簿登记。经备案的项目产生减排量后，应由审定和核证机构对减排量进行核证，出具减排量核证报告，并向国家主管部门申请减排量备案。自愿减排项目减排量经备案后，方可成为 CCER，在国家登记簿登记并在经国家备案的交易机构内交易。用于抵销碳排放的减排量，应于交易完成后在国家登记簿中予以注销。

CCER 交易

国家登记簿会为项目业主同时开设两个账户，一是一般持有账户，二是交易账户。一般持有账户用于证明对 CCER 的持有，实现 CCER 到交易账户转移，以及清缴注销等功能。交易账户主要是与交易所联通，实现从交易账户转移到交易所进行市场交易的功能。交易账户可与北京绿色交易所、天津排放权交易所、上海环境能源交易所、广州碳排放权交易所、深圳碳排放权交易所、湖北碳排放权交易中心、重庆联合产权交易所、四川联合环境交易所、海峡股权交易中心等 9 家经国家主管部门备案的 CCER 交易机构连通，在需要转入的交易所开设账户绑定即可完成 CCER 转出到相应交易所进行交易 27。

2.2 用能权交易

2.2.1 基本情况

用能权是指在能源消费总量和强度双控的前提下，用能单位经核发或交易取得，允许其使用或投入生产的综合能源消费量权益 28。在用能权交易机制的作用下，纳管企业可以通过调整能源消费结构，优化能耗技术，达到节能减排、绿色发展的目的 29。
用能权交易机制是在降低能耗总量和强度双控目标的背景下提出的。2015 年 9 月，中共中央、国务院印发的《生态文明体制改革总体方案》中首次提出推行用能权交易制度。2016 年 7 月，国家发改委印发了《用能权有偿使用和交易制度试点方案》，明确提出自 2017 年起，我国将在浙江、福建、河南、四川等四个省份开展用能权有偿使用和交易试点，并逐步完善方案。2019 年试点任务取得阶段性成果，形成可复制可推广的经验、做法和制度，在 2020 年开展试点效果评估，视情况逐步推广 30。

2.2.2 用能权交易试点实施进展

《用能权有偿使用和交易制度试点方案》公布后，浙江、福建、河南、四川四试点响应国家号召，陆续印发各自的用能权有偿使用和交易试点工作方案，并启动正式交易。但由于各试点省份起步时间、经济基础等存在差异，各省工作进展不同。试点省份普遍将钢铁、水泥、化工等重点耗能行业纳入试点范围，其中福建将火力发电纳入 31。交易标的均为用能权指标（以吨标准煤为单位），其中四川提出逐步探索在交易中研究引入可再生能源绿色电力证书等作为补充交易产品 28。四试点用能权交易实施方案梳理如表 2-3 所示。

<table>
<thead>
<tr>
<th></th>
<th>浙江</th>
<th>福建</th>
<th>河南</th>
<th>四川</th>
</tr>
</thead>
<tbody>
<tr>
<td>指导性文件</td>
<td>2018 年 8 月印发《浙江省用能权有偿使用和交易试点实施方案》</td>
<td>2017 年 12 月印发《用能权有偿使用和交易试点实施方案》</td>
<td>2018 年 7 月印发《河南省用能权有偿使用和交易试点实施方案》，并于 2022 年 4 月发布了修订版</td>
<td>2018 年 11 月印发《四川省用能权有偿使用和交易试点实施方案》</td>
</tr>
<tr>
<td></td>
<td>2019 年 9 月印发《福建省用能权有偿使用和交易试点实施方案》</td>
<td>2020 年 1 月发布</td>
<td></td>
<td></td>
</tr>
<tr>
<td>交易主体</td>
<td>交易产品</td>
<td>交易范围</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>各市、县 (市、区) 政府和有关企业、初期以企业与政府交易为主，市场成熟后交易主体为企业与企业、企业与政府</td>
<td>以纳入用能权交易试点的用能单位及自愿参与用能权交易试点的用能单位为主</td>
<td>省级节能主管部门; 各省辖市政府、济源示范区管委会; 新建 “ 两高 ” 项目实施单位; 自愿参与市场交易并完成履约义务的用能单位</td>
<td></td>
<td></td>
</tr>
<tr>
<td>重点用能单位以及符合用能权交易规则相关规定的其他用能单位、社会组织、组织</td>
<td>一定比例 (不超过 50%) 区域年新增用能指标、规模以上企业通过淘汰落后产能和压减过剩产能腾出的用能空间。 企业通过节能技术改造等方式产生的节能量</td>
<td>市场启动初期以用能权指标现货交易为主，依法依规逐步引入其他相关产品交易</td>
<td>省级用能权指标、地方用能权指标、新建 “ 两高 ” 项目用能权、自愿参与交易单位用能权指标，交易品种包括综合能源消费量和煤炭消费实物量</td>
<td></td>
</tr>
<tr>
<td>核心交易产品是用能权交易主管部门核定的用能权指标。 全省范围内非重点用能单位通过采用先进工艺和装备、淘汰落后产能、实施节能技术改造降低能耗获得的节能，经审核和核准备案后，可作为补</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 绿色电力证书交易机制

2.3.1 基本情况

绿色电力证书（简称“绿证”）交易机制是完善可再生能源支持政策和创新发展机制的重大举措，有利于促进清洁能源高效利用，降低国家财政资金的直接补贴强度，加快推动能源转型。随着我国可再生能源的发展和能耗双控、碳排放双控工作的推进，绿色电力证书交易机制的覆盖范围也在适时地变化调整。

2017 年 1 月 18 日，国家发改委、财政部、国家能源局联合印发《关于试行可再生能源绿色电力证书核发及自愿认购交易制度的通知》，标志着我国绿色电力证书制度开始试行。当年 7 月 1 日，绿证自愿认购交易正式启动。

起初，绿色电力证书是指国家对发电企业每兆瓦时非水可再生能源上网电量颁发的具有独特标识代码的电子证书，是非水可再生能源发电量的确认和属性证明以及消费绿色电力的唯一凭证。

我国绿证核发对象最初为列入国家可再生能源电价附加补助目录内的陆上风电和光伏发电项目（不含分布式光伏发电）。绿证自愿认购交易政策的出台主要是为了减小可再生能源电价补贴缺口，使得风电、光伏发电企业能以不高于补贴的价格出售绿证，相应电量则不再获得补贴。2019 年 1 月 10 日国家发改委和能源局又联合发布了《关于积极推进风电、光伏发电无补贴平价上网有关工作的通知》, 进一步扩大了可核发绿证项目的范围，不仅包括列入可再生能源发电
项目补贴清单的项目，还包括平价上网和低价上网的陆上风电及集中式地面光伏项目。

2022年8月，国家发改委、国家统计局、国家能源局发布了《关于进一步做好新增可再生能源消费不纳入能源消费总量控制有关工作的通知》，明确规定将可再生能源绿色电力证书作为可再生能源电力消费的凭证，可再生能源电力包括风电、太阳能发电、水电、生物质发电、地热能发电等。各省级行政区域可再生能源消费量以本省各类型电力用户持有的当年度绿证作为相关核算工作的基准。企业可再生能源消费量以本企业持有的当年度绿证作为相关核算工作的基准。绿证核发范围覆盖所有可再生能源发电项目，建立全国统一的绿证体系，由国家可再生能源信息管理中心根据国家相关规定和电网提供的基础数据向可再生能源发电企业按照项目所发电量核发相应绿证。

2.3.2 绿证核发及交易规则

目前，我国的绿色电力证书核发工作由国家可再生能源信息管理中心负责，绿证交易平台为绿色电力证书自愿认购平台。现阶段我国绿色电力证书交易主要以自愿交易为主，获得绿证的陆上风电和光伏发电企业可申请在绿证认购平台上开户并出售绿证，各级政府机关、事业单位、社会机构和个人均可以在绿证认购平台上注册账户并认购绿证。绿色电力证书自愿交易完成后，采取“证电分离”的形式进行绿色电力证书的权属转移，不涉及电量交易。风电、光伏企业出售绿证后，相应的电量不再享受国家可再生能源电价附加资金的补贴。认购
人购买绿证后不得再次出售。绿证交易推行以来，自愿认购市场需求持续低迷，虽然核发并挂牌交易的绿证数量很多，但买方购买的频次及数量都较低，目前成交的绿证绝大部分都是企业及个人出于履行社会责任或支持国家政策的目的而认购。

除上述自愿认购外，绿证交易还可以被企业用于完成可再生能源电力消纳保障机制（简称配额制）下的消纳责任。2019年5月10日，国家发改委、能源局发布了《关于建立健全可再生能源电力消纳保障机制的通知》，明确对电力消费设定可再生能源电力消纳责任权重，并将自愿认购可再生能源绿色电力证书作为完成消纳量的替代方式之一。承担消纳责任的市场主体可以自愿认购绿色电力证书，绿证对应的可再生能源电量等量折为消纳量。

2.4 绿色电力交易机制

2.4.1 基本情况

绿色电力交易是指以风电、光伏等绿色电力上网电量为标的物的电力中长期交易，用以满足电力用户购买、消费绿色电力需求，并提供相应的绿色电力消费认证。绿电交易是在电力中长期交易的框架下，设立的独立交易品种，这里的绿色电力产品初期为风电和光伏发电企业上网电量，条件成熟时可扩大至符合条件的水电（等其他可再生能源上网电量）。

2021年9月，国家发改委、国家能源局正式批复《绿色电力交易试点工作方案》，同意国家电网公司、南方电网公司开展绿色电力交易试点，中国的绿电交易市场随之开启。绿电交易以市场化方式引导
绿色电力消费，还原绿电的绿色商品属性，全面反映绿色电力的电能价值和环境价值，将绿色电力的环境价值传导给终端用户，能够更好促进新型电力系统建设。

2.4.2 绿色电力交易方式

根据《绿色电力交易试点工作方案》，绿电交易分为电力直接交易和向电网企业购买两种方式。电力直接交易初期主要面向省内市场，由电力用户或售电公司与绿色电力发电企业等市场主体直接参与，通过双边协商、集中撮合、挂牌等方式达成交易电量、电价，签订双边交易合同。在无法满足绿色电力消费需求的情况下，电力用户可通过向电网企业购买其保障收购的绿色电力产品达成交易。这类绿色电力产品来自部分带补贴的新能源项目，或来自本省电网企业参与省间市场化交易购入。其中，带补贴的新能源项目交易电量将不再领取补贴或注册申请自愿认购绿证，不计入其合理利用小时，实现了从计划体系下的定量定价转向由市场决策下的量价构成，通过市场机制分担补贴，缓解补贴缺口压力；电网企业参与省间市场化交易则是通过市场机制实现绿色电力的优化配置，扩大了绿色电力的交易范围，有助形成全社会消费绿色电力的理念。

2.4.3 绿电交易与绿证的联系

绿证本身是可再生能源发电量的确认和属性证明以及消费绿色电力的唯一凭证，因此二者之间存在天然的联系，绿电交易依托绿证开展，绿电环境价值的实现需要以绿证为载体。两者最大的区别在于绿证与物理电量是否“捆绑”交易。绿电交易实际上是一种“捆绑式”的
交易方式，与国际上绿证与物理电量“捆绑”交易的 PPA 模式类似，即绿电的买方从发电企业购买物理电量的同时，获取电量对应的绿证，买方对外宣称消费绿色电力需与绿证相对应。绿证交易以“非捆绑”方式开展，购买方可以从不同发电企业分别购买物理电量和绿证。

在绿电交易与绿证的衔接方面，《绿色电力交易试点工作方案》提出建立全国统一的绿证制度，国家能源主管部门组织国家可再生能源信息管理中心，根据绿色电力交易试点需要批量核发绿证，并划转至电力交易中心，电力交易中心依据绿色电力交易结算结果将绿证分配至电力用户。绿色电力交易中核发的绿证与自愿认购的绿证均由国家可再生能源信息管理中心核发，具有相同的认证效力，本质上是一致的。绿电的环境属性完全通过绿证体现，所有绿证均由国家可再生能源信息管理中心核发，每张绿证对应唯一的编码，记录绿电产生、绿证核发、证书交易、绿电消费、证书注销的全过程，避免了绿电交易机制和绿证交易机制下对绿证的重复申领，进而避免了潜在的环境权益双重计算风险。

2.5 抵销机制的优势及存在的主要问题

2.5.1 抵销机制在实现双碳目标中的优势

抵销机制作为促进温室气体减排、推动绿色低碳发展的市场机制和工具，将在我国碳达峰碳中和目标的实现进程中发挥重要作用，在一些方面具有其独特的优势。

- 降低履约成本。抵销机制为各层级主体实现节能减排目标提供了更多可供选择的方案，增加了履约的灵活性。买方通过向减排成本
更低的部门或地区购买减排成果来冲抵自身的排放量，能够以更低的经济成本实现相同的减排效果。

加快能源结构转型、促进可再生能源发展。实施绿电交易、绿证交易等绿色权益交易机制有助于加快电力市场化改革，推动构建以新能源为主体的新型电力系统，为可再生能源产业发展提供更多的资金激励，注入稳定发展的信心。

促进碳排放权交易体系未覆盖行业的减排。我国碳排放权交易体系处于运行初期，覆盖的行业部门有限，对于尚未纳入或不宜纳入碳排放权交易体系的行业和部门，碳信用机制等市场机制可以通过提供资金支持的手段激励其减少排放。

2.5.2 抵销机制现存的主要问题

抵销机制通过发挥市场在资源配置中的决定性作用，为市场主体提供灵活的履约方式，可以在实现低成本减排的同时，达到降低能耗、促进可再生能源消纳等多重效益。然而，目前我国各种绿色权益交易机制的建设仍处于起步阶段，在抵销机制设计中存在一些不可忽视的关键问题。在机制总体设计和建设初期如果不能有效识别并解决这些问题，将很大程度上制约抵销机制的健康、可持续发展，阻碍我国的碳达峰碳中和进程。

顶层设计缺乏统筹，制度的系统性规划不足。由于上述多种权益交易机制分别由不同的主管部门负责建设和监管，各主管部门在机制设计中缺少必要的协调和沟通，没有统筹考虑各种机制之间的关联性和各自的定位分工，导致不同绿色权益交易机制的目标、功能、
管制对象等产生交叉重叠，一定程度上造成了政策冗余，降低了政策实施的效率。

■ 尚未建立多种绿色权益交易机制之间的协调衔接制度。多种权益交易机制的功能定位虽然各有侧重，但在理论依据、政策效果等方面存在一定的相似性。通过在多种机制间建立科学合理的衔接制度，可以实现政策协同，发挥机制合力。然而目前上述绿色权益交易机制彼此相对独立，机制之间缺乏有效的衔接联动。

■ 抵销机制的市场覆盖范围有限，各种绿色权益交易机制的作用发挥不充分。上述绿色权益交易机制仅局限于一定区域、一定品种的交易，例如，温室气体自愿减排机制尚未重启，用能权交易机制只覆盖了个别试点省份和行业，绿电交易以省内交易为主，跨区域绿电交易面临较大阻碍。总体而言，目前我国绿色权益交易机制的市场流动性和活力不足，难以充分发挥市场机制的优势。

■ 减排成果的双重计算。由于多种绿色权益交易机制之间的交叉重叠，同一种绿色资产可能通过不同的渠道将其环境价值进行变现，例如相同的可再生能源发电量可能同时申请绿证和CCER进行出售，可再生能源电力的环境价值就获得了重复的激励。资金层面的重复激励不会影响减排的真实性，且在一定程度上可以促进可再生能源产业的发展扩张，因此纯粹的双重激励无可厚非。而严重的问题在于，如果购买绿证的企业在其范围二排放核算中对绿证相应的碳减排量进行扣减，而CCER的买方在减排目标考核中也使用这部分减排量抵销其碳排放，就会导致同一减排量被重复用于履约，即减排成果的双重
减排成果的双重计算，就是指在减排目标考核中，由于一个主体或多个不同主体重复使用同一减排活动产生的减排成果，或由于核算方法不完善，导致相同的减排成果被不止一次地计算用以实现减排目标。双重计算的核心本质在于对环境完整性的损害，即与各主体不使用抵销机制而仅通过自身减排努力实现其减排目标相比，在抵销机制下借助外部减排成果实现目标导致各主体实际减排量低于各自报告的减排量的总和，即导致了实际减排成果的夸大。

减排成果的双重计算问题直接影响抵销机制的可靠性和稳健性，决定减排量是否真实有效，减排目标是否切实达成，是双碳目标下抵销机制设计完善过程中最核心、最关键的难题。在破解双重计算问题的同时，机制设计运行中的许多其他问题也将迎刃而解。后文将重点针对抵销机制中的减排成果双重计算问题展开深入分析。
3 绿色权益交易机制可能导致的双重计算风险

3.1 同类绿色权益交易机制中的双重计算风险

3.1.1 碳信用机制下减排指标的双重签发和双重使用

多种碳信用机制的存在为减排项目的业主和寻求使用减排指标抵销排放的主体提供多样化选择的同时，也导致了潜在的减排量双重计算风险。碳信用机制下减排指标的双重计算主要以双重签发(double issuance)和双重使用(double use)的形式发生，如图 3-1 所示。

双重签发

双重使用

图 3-1 碳信用机制下减排指标的双重计算

双重签发即为同一单位的减排成果发放一个以上的减排指标，双重签发可能以多种方式发生，例如:

- 在一种碳信用机制下，为同一减排量重复发放减排指标，但大多数碳信用机制都有相应的程序避免同一个项目重复注册，因此这种情况发生的概率很小。
一个减排项目在两种不同的碳信用机制下注册并为同样的减排量申请减排指标，两种机制均为其签发减排指标，如温室气体自愿减排交易机制和黄金标准分别为同一可再生能源项目产生的减排量发放CCER和VER；又如我国全国性温室气体自愿减排机制和地方碳普惠机制分别为同一可再生能源项目产生的减排量签发CCER和碳普惠核证减排量。虽然绝大多数碳信用机制在对项目进行审核时都要求项目不得在其他机制下重复签发减排指标，这些机制的注册和签发平台也大多公开可查，但是不同机制平台披露信息并没有统一的标准，不同机制下的减排指标也没有统一的编码标识，仅仅通过平台披露的项目信息很难彻底避免减排指标的双重计算。

双重使用指的是一减排指标被同一主体使用两次或被两个不同的主体分别使用以实现减排目标。双重使用发生的形式更为广泛，造成的双重计算问题也更加复杂。例如：

1. 一个主体在两个不同的年份使用同一个减排指标实现其减排承诺，或抵销指标的出售方将一个减排指标重复出售给两个不同的购买方主体，两个购买方主体均使用这一减排指标实现其各自的减排目标，就导致了减排指标的双重使用。在实践中，上述情况发生的可能性很小。

2. 另一种更可能发生双重使用的情况为减排指标的出售方和购买方将同一温室气体减排量计入其自身的减排目标（一些文献中将这种双重计算定义为“双重申索(double claiming)”）。产生减排的主
体在报告减排量时未说明其转让的减排指标，即未将相应的减排量添加到其排放清单或从排放预算中扣除，同时购买减排指标的主体使用这些指标来实现其减排目标，就导致了双重计算的产生。例如，A公司实施了一个内部减排项目，降低了来自自身核算边界内排放源的排放量。随后，A公司将该项目减排量对应的减排指标出售给B公司，B公司将用于实现自己的减排目标，但A公司同时仍将这部分减排量计入自己的目标。

需要注意的是，减排指标的双重使用还可能影响不同层级的减排目标考核。对于企业层面的减排指标交易，倘若减排指标的买卖双方属于不同的行政管辖区，那么减排指标的转让还可能影响相应区域的考核。一个区域内的主体如果使用来自区域外的减排指标完成自己的减排目标，在未来的考核中，应当在考核减排指标输出区是否实现其相应目标时将这一交易的影响考虑在内，否则将会发生一个减排指标被两地同时使用的问题，从而导致双重计算。如果涉及跨区交易的指标出售方在转让减排指标后仍使用相应减排量实现目标，则可能同时影响其自身和所属区域的目标考核，使双重计算对环境完整性的破坏加剧。

3.1.2 绿证签发中的双重计算风险

随着可再生能源的发展和各类主体对绿色电力消费需求的快速增长，世界范围广泛建立了绿证交易市场。除中国之外，美国、日本、英国、法国、荷兰等二十多个国家均实施了绿证交易机制。除了政府机构核发的绿证外，一些第三方非政府组织核发的绿证也得到了广泛
的认同和支持。

对于国内的可再生能源项目而言，可以申请的绿证主要包括中国的可再生能源绿色电力证书（GEC）以及国际可再生能源证书（I-REC）和全球可再生能源交易工具（TIGR）两种国际绿证。由于这三种绿证分别由不同的管理机构负责核发（如表3-1所示），且三个机构分别位于不同的国家，彼此间信息交换不畅。同一个可再生能源发电项目产生的绿色电力可能在不同的绿证签发机制下重复申请，获得不同种类的绿证并分别出售，绿证的购买方宣称通过购买绿证减少了电力相关排放，这样就会导致减排成果的双重计算。

<table>
<thead>
<tr>
<th>表3-1 中国绿证与国际绿证对比</th>
</tr>
</thead>
<tbody>
<tr>
<td>绿证类型</td>
</tr>
<tr>
<td>GEC</td>
</tr>
<tr>
<td>I-REC</td>
</tr>
<tr>
<td>TIGR</td>
</tr>
</tbody>
</table>

3.1.3 绿色电力排放核算中的双重计算风险

GHG Protocol提出，对于企业外购电力排放的核算有两种通用的方法，一种是基于位置的核算方法（location-based accounting），一种
是基于市场的核算方法（market-based accounting）^{39}。基于位置的方法在核算中对各个用户使用的电力来源类型不加以区分，电网中所有的电力用户在核算其外购电力产生的碳排放时，均使用电网的平均排放因子。各个企业的范围二排放量（E_{LB}）等于用电量（C）与电网平均排放因子（EF_{mix}）的乘积：

$$E_{LB} = C \times EF_{mix}$$

基于市场的核算方法则考虑了企业参与绿电交易或绿证交易等市场机制对范围二排放量的影响，在核算中对不同来源的电力加以区分，在计算其对应的排放量时使用不同的电网排放因子。各个企业的范围二排放量（E_{MB}）等于购买绿电或绿证对应的电量（C_{ge}）与绿电排放因子（EF_{ge}，一般计为0）的乘积，再加上其余用电量（$C - C_{ge}$）与余下电网排放因子（E_{res}）的乘积：

$$E_{MB} = C_{ge} \times EF_{ge} + (C - C_{ge}) \times EF_{res}$$

其中，余下电网排放因子需要将电网中参与绿电交易或获得绿证核发的可再生能源电量剔除后，由发电总排放量除以余下电量计算得出。实际上，基于位置的核算方法是将电网中可再生能源发电产生的减排效益根据用电量平均分摊在了每个电力用户上，而在基于市场的核算方法下，可再生能源电量对应的减排效益全部归属于绿电或绿证的买方，因此电网中其他电力相应的排放量应该使用上调后的余下电网排放因子计算。如果仍使用原始的电网平均排放因子计算其余电量对应的排放量，就会导致绿色电力产生的减排效益被重复计算。
以图 3-2 所示的情况为例，假设电网中总上网电量由 100MWh 绿电和 900MWh 火电构成，相应的发电排放量分别为 0 和 1000 tCO₂e，则电网平均排放因子为 1.00 tCO₂e/MWh。企业 A 通过绿电交易购买了 100MWh 绿电，企业 B 则使用了其余 900MWh 火电。在基于位置的核算方法下，企业 A 和企业 B 统一使用电网平均排放因子计算范围二排放，其排放量分别为 100 tCO₂e 和 900 tCO₂e。在基于市场的核算方法下，企业 A 通过购买绿电实现了范围二的净零排放，企业 B 在核算中需要使用余下电网排放因子（1.11 tCO₂e/MWh），其相应的范围二排放量为 1000 tCO₂e。两种核算方法下，企业 A 和 B 的总排放量一致。如果企业 A 使用基于市场的核算方法将外购绿电的排放量计为 0，而企业 B 仍使用电网平均排放因子计算其范围二排放，报告的排放量为 900 tCO₂e，此时企业 A 和 B 报告的总排放量为 900 tCO₂e，导致了 100 tCO₂e 温室气体排放的低估，即绿电对应的 100 tCO₂e 减排量被企业 A 和 B 重复计算。

3.2 绿色权益交易机制交叉重叠导致的双重计算风险

目前，我国同时存在碳信用机制、用能权交易、绿电交易、绿证
交易等多种绿色权益交易机制，上述各项政策机制出台于不同时期，分别为了解决不同问题，但整体而言都是为了推动节能减排和能源绿色低碳转型，各项政策的管制范围和手段存在一定的交叉和重叠，实施效果之间存在相互影响，在抵押机制设计中如果不考虑各类机制之间的协调和衔接，则可能导致环境权益的重复计算（如图 3-3 所示）。

本节将对各类绿色权益交易机制之间可能存在的交叉及其导致的减排成果双重计算风险逐一进行分析（为分析方便，本节中碳信用机制均以我国温室气体自愿减排交易机制为例）。

3.2.1 碳排放权交易与碳信用机制

目前，CCER 与碳配额之间的双重计算风险主要存在于试点碳市场中，与 CCER 的跨区域交易挂钩。纳入碳排放权交易管理的重点排
放单位通过在其内部实施减排项目，可能同时获得碳市场配额盈余和用于抵销的减排指标。为避免这种潜在的双重计算风险，我国全国碳市场及除重庆以外的试点碳市场均对用于抵销的减排指标来源进行了限制，要求减排指标须来自纳入配额管理单位的排放边界之外（如表 3-2 所示），从而避免了上述双重计算风险。

<table>
<thead>
<tr>
<th>地区</th>
<th>高可抵销比例</th>
<th>减排指标类型</th>
<th>指标区域限制</th>
<th>减排指标来源限制</th>
</tr>
</thead>
<tbody>
<tr>
<td>全国</td>
<td>高可抵销比例</td>
<td>CCER</td>
<td>风电、太阳能发电、垃圾焚烧发电项目；(1) 梅州、潮州、揭阳、汕头等省内地区；(2) 新疆、西藏、宁夏、内蒙古、甘肃、青海、陕西、山西、江苏、湖南、四川、贵州、广西、云南、福建、海南等省份；(3) 与本市签署碳交易区域战略合作协议的省份或地区。</td>
<td>用于抵销的国家核证自愿减排项目，不得来自于纳入全国碳排放权交易市场的减排项目。</td>
</tr>
<tr>
<td>深圳</td>
<td>管控单位年度碳排放量的 10%</td>
<td>CCER、碳普惠减排量、主管部门批准的其他核证减排量</td>
<td>农村户用沼气和生物质发电项目、清洁交通减排项目、海洋碳减排项目；(1) 本市行政区内；(2) 与本市签署碳交易区域战略合作协议的省份或地区。</td>
<td>碳排放管控单位在本市碳排放量核查边界范围内产生的核证减排量不得用于本市配额履约义务。</td>
</tr>
<tr>
<td>上海</td>
<td>试点企业该年度通过分配取得的配额量的 5%</td>
<td>CCER</td>
<td>本市纳入配额管理的单位在其排放边界范围内的国家核证自愿减排项目不得用于本市的配额清缴。</td>
<td></td>
</tr>
<tr>
<td>北京</td>
<td>重点排放单位当年配额数的 5%</td>
<td>CCER、节能项目碳减排量、BFCER</td>
<td>(1) 京外项目产生的核证自愿减排量不得超过其当年核配额量的 2.5%；(2) 河北省、天津市和与本市签署相关合作协议的地区优先。</td>
<td>来源于本市行政区域内重点排放单位固定设施化石燃料燃烧、工业生产过程和制造业协同废 弃物处理以及电力消耗。</td>
</tr>
</tbody>
</table>
但是对于试点碳市场而言，能否使用来自其他试点碳市场配额管理单位排放边界内产生的 CCER 减排指标没有明确规定，因此，试点碳市场控排企业使用来自试点区域外的抵销指标完成配额清缴义务时，应考虑抵销指标跨区交易引发的双重计算风险。例如，A 地试点碳市场下的控排企业通过实施减排项目获得了碳配额盈余，同时又将该项目产生的减排量申请 CCER，出售给 B 地试点碳市场下的控排企业帮助其履约，这样就导致了减排量的双重计算。部分试点碳市场（如湖北和福建碳市场）将用于抵销的减排指标产生地限制在试点行政区范围内，这在一定程度上规避了减排指标跨区交易导致的双重计算问题，但由于其他试点地区缺少相关规定，从试点碳市场外购买的减排指标仍可能源自纳入碳排放配额管理的单位，因此这种双重计算的风险仍需引起重视。
险依然存在。例如天津碳市场下某控排企业购买来自北京自愿减排项目产生的 CCER 抵消其排放，而这一自愿减排项目的业主为北京碳市场管控企业，就会导致减排量的双重计算。

3.2.2 用能权交易与碳排放权交易

对于同时被用能权交易和碳排放权交易机制覆盖的控排企业丙而言，企业同时拥有碳配额和用能权指标，若企业丙内部通过实施节能项目减少了 X 单位总能耗，减少了 Y 单位碳排放，并由此产生了 X 单位用能权指标和 Y 单位碳配额的盈余。企业丙可以将 X 单位用能权指标和 Y 单位碳配额分别在用能权市场和碳市场出售给企业甲和乙。企业甲购买用能权指标后，允许消费的能源总量增加，化石能源消费的增加将相应地导致温室气体排放量上升（用能单位自产自用可再生能源不计入其综合能源消费量）。从结果来看，由于企业丙节能项目产生的环境权益同时转换为用能权指标和碳配额出售，企业甲和企业乙的实际碳排放量均可以上升 Y 个单位，总排放量增加了 2Y 个单位，但企业丙产生的减排量只有 Y 个单位，相当于企业丙产生的

图 3-4 碳排放权交易与碳信用机制交叉重叠导致的双重计算
一单位减排量同时用于抵销企业甲、乙增加的两单位排放量，实质上造成了减排成果的双重计算。

![图 3-5 用能权交易与碳排放权交易交叉重叠导致的双重计算](image)

3.2.3 用能权交易与碳信用机制

重点用能单位通过实施节能技改项目可能在获得用能权指标盈余的同时申请碳信用，进而导致双重计算风险。例如，完成了 CCER 备案的某节能项目减少了 Y 吨碳排放量，项目主体丙既可以将 Y 吨减排量申请 CCER 并出售，同时也可以将项目实施产生的用能权指标盈余在用能权市场中进行交易，购买用能权指标的企业甲和购买 CCER 的企业乙分别完成履约。与上一节所述的碳交易和用能权交易之间双重计算的情形类似，企业甲购买用能权指标后，允许消费的能源总量增加，化石能源消费的增加将相应地导致温室气体排放量上升。由于企业丙节能项目产生的环境权益同时转换为用能权指标和 CCER 出售，企业甲和企业乙的实际碳排放量均可以上升 Y 个单位，
总排放量增加了 2Y 个单位，但企业丙产生的减排量只有 Y 个单位，相当于企业丙产生的一单位减排量同时用于抵销企业甲、乙增加的两单位排放量，实质上造成了减排成果的双重计算。

图 3-6 用能权交易与碳信用机制交叉重叠导致的双重计算

3.2.4 绿电、绿证交易与碳信用机制

碳信用机制与绿电、绿证交易市场的参与主体都涉及可再生能源发电企业，风电与光伏发电企业生产的可再生能源电力均是 CCER 和绿证核发的主要对象。如果在机制设计中不考虑不同机制之间的交叉影响，就可能导致环境权益的双重计算。碳信用机制与绿电、绿证交易之间的双重计算一般以 CCER 与绿证重复申请的形式发生，即对于相同的可再生能源发电项目，既获得相应的绿证，又在碳信用机制下备案认证成为 CCER。在绿电或绿证交易市场中，企业购买绿电或绿证以减少其“范围二”排放，履行自身的减排承诺；在碳市场中，重点
排放单位购买 CCER 来帮助其完成配额清缴义务，同一减排成果在两种机制下被重复计算。自 2017 年 3 月起国家发改委暂停了 CCER 项目和减排量的备案审批，而我国的绿证自愿认购交易自 2017 年 7 月 1 日起才正式启动，因此目前不存在 CCER 与绿证双重申请的情况，但未来 CCER 重启后，应从制度设计上避免 CCER 与绿证的重复申请，进而杜绝由此导致的双重计算。

图 3-7 绿电、绿证交易与碳信用机制交叉重叠导致的双重计算

3.2.5 绿电交易与碳排放权交易

目前我国全国碳市场仅覆盖了发电行业，根据生态环境部相关要求，纳入全国碳市场的发电行业重点排放单位需要开展温室气体排放核算与报告工作，2021 年度以及 2022 年 1 至 3 月按照《企业温室气体排放核算方法与报告指南 发电设施》（环办气候〔2021〕9 号）（简称《指南》）要求开展温室气体排放核算、编制排放报告，自 2022 年 4 月起，改用《企业温室气体排放核算方法与报告指南 发电设施（2022 年修订版）》（简称《指南》（2022 年修订版））。

对于购入使用电力
产生的二氧化碳排放核算，《指南》及《指南》(2022 年修订版)均未对购入电力的来源类型进行区分，仅用购入使用电量乘以全国电网平均排放因子得出。这种计算方法的原理与 3.1.3 中提到的“基于位置的核算方法”一致，由于所有企业均使用统一的电网平均排放因子，因此不会造成可再生能源电力减排成果的双重计算。

但另一方面，对于购买绿电和绿证的企业而言，企业为绿电和绿证的环境属性支付了环境溢价，其对环境权益的所有权却无法直接体现在排放核算和考核履约中，这可能会打击企业购买消费绿证和绿电的积极性，影响绿电交易和绿证交易市场的活跃度。因此，在近期对水泥等行业的企业温室气体排放核算方法与报告指南进行修订的过程中，利益相关方对重点排放企业因购买消费绿电而避免的排放是否要在其排放核算中扣除展开了讨论。虽然目前针对这一问题的处理方案尚未形成共识，但表明未来存在允许企业在排放核算中对绿电相应的减排量进行抵扣的可能。如果未来新的核算方法允许绿电消费企业在排放核算中对避免的排放量进行扣除，那么核算控排企业外购电力排放时不宜再使用全国电网平均排放因子，而要使用余下电网排放因子，否则可能导致减排量的双重计算。

3.3 减排成果双重计算风险量化评估案例

我国绿电交易启动以来，绿电采购的需求迫切增长。腾讯、阿里巴巴、秦淮数据等多家互联网科技企业纷纷加入绿电采购的浪潮，达成了超过“亿千瓦时”级别的大规模采购41。因外购电力排放是互联网科技企业最主要的排放来源之一，购买绿电将成为这些企业减排降碳，
实现双碳目标的重要手段。随着多家互联网科技企业碳中和与 100% 可再生能源（RE100）目标的提出，绿电市场化交易规模将进一步扩大。然而，当前不明确的核算规则和不完善的机制设计可能导致巨大的双重计算风险，阻碍企业碳中和目标的实现。在此，我们以腾讯为例定量评估其 2022 年度通过绿电采购实现范围二减排时可能存在的双重计算风险，刻画绿电交易中潜在双重计算的严重后果。

腾讯作为我国头部互联网企业，积极响应双碳目标，布局碳中和战略。2022 年 2 月，腾讯发布《碳中和目标及行动路线报告》，提出不晚于 2030 年，实现自身运营及供应链的全面碳中和，同时实现 100% 绿色电力。采购绿色电力是腾讯实现碳中和与可再生能源目标的关键策略之一，在 2022 年度交易市场，腾讯集中签订了绿色电力交易合同，共计 5.04 亿千瓦时，锁定了 6 个风电光伏项目的年度部分发电量 42。

与绿电交易相关的双重计算可能以两种途径发生。一方面，电力排放核算方法中绿电相应的规则不明确，腾讯在其范围二排放核算中对使用外购绿电避免的排放量进行扣减后，若电网中其余电量对应的排放量仍使用全国或区域平均电网排放因子计算，就会导致绿电减排量的双重计算。另一方面，若腾讯购买的绿色电力对应的减排量已经获得 CCER 或其他碳信用（目前 CCER 签发暂未重启，不存在绿电对应的减排量同时获得 CCER 的情况，但不排除未来存在这一潜在风险），也会导致这部分减排量的重复计算。即同一绿色电力对应的减排量可能通过在企业范围二排放量中扣减、降低电网平均排放因子、
申请碳信用三种途径得到体现。因此，研究设置了三种情景（表 3-3）量化不同程度的减排成果双重计算后果。

表 3-3 减排成果双重计算量化评估情景设定

<table>
<thead>
<tr>
<th>情景</th>
<th>绿电计算</th>
<th>电网平均排放因子降低</th>
<th>绿电减排量申请碳信用</th>
<th>情景说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>√</td>
<td>/</td>
<td>/</td>
<td>基准情景，只允许绿电对应的减排量在企业排放核算中扣除，计算的减排量可认为是绿电实际的减排量，不存在双重计算</td>
</tr>
<tr>
<td>S1</td>
<td>√</td>
<td>√</td>
<td>/</td>
<td>绿电对应的减排量在企业排放核算中扣除后，余下电网排放因子未上调，仍使用原先的电网平均排放因子</td>
</tr>
<tr>
<td>S2_1</td>
<td>√</td>
<td>√</td>
<td>25%</td>
<td>绿电对应的减排量在企业排放核算中扣除后，余下电网排放因子未上调，仍使用原先的电网平均排放因子，且有 25%的绿电对应的减排量申请了碳信用</td>
</tr>
<tr>
<td>S2_2</td>
<td>√</td>
<td>√</td>
<td>50%</td>
<td>绿电对应的减排量在企业排放核算中扣除后，余下电网排放因子未上调，仍使用原先的电网平均排放因子，且有 50%的绿电对应的减排量申请了碳信用</td>
</tr>
<tr>
<td>S2_3</td>
<td>√</td>
<td>√</td>
<td>100%</td>
<td>绿电对应的减排量在企业排放核算中扣除后，余下电网排放因子未上调，仍使用原先的电网平均排放因子，且绿电对应的减排量全部申请了碳信用</td>
</tr>
</tbody>
</table>

本研究使用 2019 年度减排项目中国区域电网基准线排放因子中南方区域电网的组合边际排放因子（0.6565 tCO₂/MWh）计算腾讯外购绿电相应的排放扣减量以及可再生能源项目申请 CCER 对应的减排量，使用最新的全国电网平均排放因子（0.5810 tCO₂/MWh）计算由于未调整余下电网排放因子而重复计算的减排量。

绿电减排量双重计算风险量化化情景分析结果如图 3-8 所示。2022年度腾讯通过参与绿电交易购买绿电 5.04 亿千瓦时，由此实现了 33.1 万吨 CO₂e 温室气体减排。在多种双重计算风险共存的情况下，依托
这部分绿电宣称的减排量可达 95.5 万吨 CO₂e，为实际减排量的 2.9 倍，造成 62.4 万吨 CO₂e 温室气体减排量的高估。由此可见，使用抵消机制实现减排目标时，不完善的核算规则和机制设计将导致巨大的双重计算风险。如果企业购买的绿电存在多种碳信用机制下重复签发的极端情况，将导致更加严重的双重计算后果。随着我国绿电交易市场的不断扩大，大规模的重复计算会对环境完整性造成不可忽视的破坏，阻碍双碳目标的实现。
4 绿色权益交易在各层级双碳目标实现中的作用及双重计算风险

我国提出双碳目标以来，国家以下各级政府和相关行业、企业、组织等都积极制定各自的碳达峰、碳中和行动方案，并提出各种减缓气候变化的目标以加快推动碳达峰、碳中和实现；同时，许多活动、产品等也提出通过购买减排指标等手段实现碳中和。在各个层级主体实现减排目标的过程中，多种绿色权益交易机制将被广泛使用并发挥重要的作用。但需要注意的是，由于不同层级的主体均要借助抵销机制履行减排承诺，这可能会使减排成果双重计算这一问题变得更加突出和复杂。本章梳理总结了地方、企业、活动、产品等多个层级提出的双碳目标及绿色权益交易机制在实现减排目标中发挥的作用，进而识别了其中存在的双重计算风险。

4.1 地方层面

2021 年 10 月 24 日国务院印发了《2030 年前碳达峰行动方案》，要求各省、自治区、直辖市人民政府按照国家总体部署，结合本地区资源环境禀赋、产业布局、发展阶段等，坚持全国一盘棋，科学制定本地区碳达峰行动方案。截至 2022 年 10 月，已有北京、天津、上海、江苏、吉林、江西等众多省市出台了碳达峰实施方案。各个省市在其碳达峰实施方案中都提出要建立健全市场化机制，充分发挥市场机制的作用；同时，多个省市提出要加大跨省绿电调入力度，提高可再生能源消纳比例。部分省份碳达峰行动方案中减排目标、电力调入、市场机制建设的相关表述如表 4-1 所示。
<table>
<thead>
<tr>
<th>行政区</th>
<th>减排目标</th>
<th>电力调入</th>
<th>市场机制建设</th>
</tr>
</thead>
<tbody>
<tr>
<td>上海</td>
<td>到2030年，单位生产总值二氧化碳排放比2005年下降70%，确保2030年前实现碳达峰</td>
<td>大力争取新增外来清洁能源供应，进一步加大市外非化石能源电力的引入力度。加强与非化石能源资源丰富的地区合作，建设大型非化石能源基地，合理布局新增和扩建市外清洁能源通道（可再生能源电量比例原则上不低于50%）</td>
<td>组织建设好全国碳排放权交易系统和交易机构，进一步丰富交易品种和方式，拓展交易行业领域覆盖面，尽快完善相关配套制度。做好碳排放权交易，电力交易及能耗双控制度之间的衔接与协调。推动建立碳普惠机制</td>
</tr>
<tr>
<td>北京</td>
<td>到2030年，单位地区生产总值二氧化碳排放确保完成国家下达目标，确保如期实现2030年前碳达峰目标</td>
<td>逐步理顺外调绿电输配、交易和消纳机制，加强需求侧管理，形成有利于促进绿色电力调入和消纳的政策环境。深化与河北、内蒙古、山西可再生能源电力开发利用方面合作，大力推动绿电进京输电通道和调峰储能设施建设。到2025年，市外调入绿色电力规模力争达到300亿千瓦时</td>
<td>继续完善碳市场要素建设，充分发挥碳排放权交易机制的作用，创新发展碳排放权交易机制和碳普惠机制，实现本市碳市场与全国碳市场有序衔接，做好温室气体自愿减排交易机构建设，率先探索建立用能权有偿使用和交易制度。持续推进绿电交易，加强电力交易、用能权交易和碳排放权交易的统筹衔接</td>
</tr>
<tr>
<td>天津</td>
<td>到2030年，单位地区生产总值二氧化碳排放比2005年下降65%以上，如期实现2030年前碳达峰目标。</td>
<td>扩大外受电规模，在保障电力系统安全稳定的前提下，到2025年，力争外受电量占全市用电量比重超过三分之一，外受电中绿电比重达到三分之一</td>
<td>深化天津碳排放权交易试点市场建设，积极探索全国碳排放权交易市场建设，将符合条件的重点排放单位全部纳入全国碳排放权交易市场。鼓励重点排放单位按规定购买经核证的温室气体减排量，用于完成碳排放配额的清缴。推进用能权交易和碳排放权交易的统筹衔接，将碳排放权、用能权交易纳入统一公共资源交易平台</td>
</tr>
<tr>
<td>江西</td>
<td>到2025年，单位生产总值二氧化碳排放确保完成国家下达指标，2030年积极引入优质区外电力，新建通道可再生能源电量比例原则上不低于50%</td>
<td>积极参与全国碳排放权交易市场相关工作，探索开展用能权有偿使用和交易试点，建立健全用能权、绿色电力证书等交易机制</td>
<td>深化天津碳排放权交易试点市场建设，积极探索全国碳排放权交易市场建设，将符合条件的重点排放单位全部纳入全国碳排放权交易市场。鼓励重点排放单位按规定购买经核证的温室气体减排量，用于完成碳排放配额的清缴。推进用能权交易和碳排放权交易的统筹衔接，将碳排放权、用能权交易纳入统一公共资源交易平台</td>
</tr>
</tbody>
</table>
年前实现碳达峰目标

对于存在跨省调入绿色电力情况下的间接排放核算，需要以绿证为基本凭证确定绿色电力环境权益的归属，避免不同省份对绿电减排效益的重复计算。各省碳达峰行动方案的制定参考生态环境部发布的《省级二氧化碳排放达峰行动方案编制指南》，其中规定的核算边界包括本省（区、市）行政区域内化石能源消费产生的二氧化碳直接排放（即能源活动的二氧化碳排放），以及电力调入蕴含的间接排放。

调入电力的排放因子使用国家推荐的排放因子，其中煤电排放因子为0.853tCO₂/MWh，气电排放因子为0.405tCO₂/MWh，调入非化石能源电力的，其相应的调入电力二氧化碳排放计入0。由于调入电力排放核算对电力来源进行了区分，分别使用各自对应的排放因子，有效地避免了电力调入和调出省份之间可再生能源减排效益的双重计算。需要注意的是，对于调出绿色电力的省份或区域，其在确定本省/区域电网排放因子时不能再将已调出的绿色电力纳入计算，否则可能造成绿电减排成果的双重计算。

4.2 企业层面

2013-2015年间国家发改委分三批编制公布了针对24个行业的企业温室气体排放核算方法与报告指南，涵盖发电、化工、石化、钢铁、水泥、电解铝等重点排放行业，为开展企业层面的温室气体排放核算提供技术支持。碳市场纳管企业需根据相应行业的温室气体排放核算方法与报告指南核算并报告其温室气体排放。根据目前的企业温室气体排放核算方法与报告指南，在企业层面进行温室气体排放核算
时，没有考虑直接消费非化石能源电力对温室气体排放量的影响，对
于净购入电力产生的排放统一使用区域电网年平均供电排放因子进
行计算。现有的核算方法不会导致减排成果的双重计算，但随着我国
绿电交易的推进，未来考虑对重点排放企业因购买使用绿电而导致
的间接排放下降进行相互扣减，则需要注意避免因未调整电网排放
因子导致的双重计算风险。

此外，我国的全国和各试点碳排放权交易体系均允许被管控重点
排放单位使用一定比例的外部减排指标（如 CCER）履行其在体系下
的配额清缴义务（见表 3-2）。试点碳市场管控下的企业在使用来自其
他试点碳市场管控范围内的 CCER 完成配额清缴义务时，可能会
因为碳排放权交易与碳信用机制之间交叉重叠的问题造成减排量的
双重计算。

在我国统筹有序推进碳达峰、碳中和的历史进程中，许多企业虽
未纳入碳市场管理，但为了履行其社会责任，实现 ESG 目标，树立
良好的企业形象，也相继提出了自己的双碳目标，如表 4-2 所示。其
中，多数企业明确表示将使用抵销机制作为实现碳达峰、碳中和目标
的途径之一。例如，阿里巴巴提出将开发高质量生态碳汇和购买高质
量碳信用作为实现碳中和的路径之一，并承诺自 2030 年起云计算电
力供给 100%采用清洁能源，即通过建设分布式可再生能源、投资清
洁能源项目、参与绿色电力交易、购买绿证等途径，借助可再生能源
电力产生的外部减排效益降低范围二排放，实现减排目标 44。顺丰表
示针对无法避免的碳排放，将采用种植“顺丰碳中和林”及购买碳补偿
额度等方式实现抵销。对于非碳市场控排企业而言，可以使用的绿色权益交易机制类型更加多样，如使用各类碳信用机制，购买绿色电力、中国绿证、国际绿证等。企业在借助抵销机制实现减排目标时，可能面临减排指标双重签发和双重使用，以及绿电、绿证和碳信用机制之间的交叉重叠导致的双重计算风险。此外，上述企业中的部分企业在核算其范围二温室气体排放时使用基于市场的方法，即对外购电力中属于绿电的部分予以扣除，而其余部分的电力排放仍使用全国或区域电网平均排放因子，同时其他企业使用基于位置的核算方法，这也导致了减排量的双重计算。

表 4-2 企业碳达峰碳中和目标

<table>
<thead>
<tr>
<th>企业</th>
<th>行业</th>
<th>碳达峰碳中和目标</th>
<th>核算范围</th>
<th>温室气体种类</th>
<th>是否使用抵销机制</th>
</tr>
</thead>
<tbody>
<tr>
<td>远洋</td>
<td>建筑</td>
<td>2050 年实现“碳中和”; 到 2025 年，碳排放/能源强度减少 35% (以 2018 年为基准年)</td>
<td>范围一、二、三</td>
<td>CO₂ 、N₂O 、CH₄ 、HFCs 、SF₆ 、NF₃ 、PFCs</td>
<td>是</td>
</tr>
<tr>
<td>顺丰</td>
<td>物流</td>
<td>在 2030 年实现自身碳效率相较于 2021 年提升 55%，在 2030 年实现每个快件包裹的碳足迹相较于 2021 年降低 70%</td>
<td>范围一、二、三</td>
<td>CO₂ 、N₂O 、CH₄ 、HFCs 、SF₆ 、NF₃ 、PFCs</td>
<td>是</td>
</tr>
<tr>
<td>阿里巴巴</td>
<td>互联网</td>
<td>不晚于 2030 年，实现自身运营碳中和(范围一、二)。不晚于 2030 年，协同上下游价值链实现碳排放强度比 2020 年降低 50%；其中，云计算作为数字化基础设施，在同阿里巴巴一起实现范围一和范围二碳中和的基础上，率先实现范围三的碳中和，成为绿色云</td>
<td>范围一、二、三</td>
<td>CO₂ 、N₂O 、CH₄ 、HFCs 、SF₆ 、NF₃ 、PFCs</td>
<td>是</td>
</tr>
<tr>
<td>蚂蚁</td>
<td>互联</td>
<td>2021 年起实现运营排放碳中和(范围一、二)</td>
<td>范围一、二、三</td>
<td>CO₂ 、N₂O 、CH₄ 、HFCs 、SF₆ 、NF₃ 、PFCs</td>
<td>是</td>
</tr>
</tbody>
</table>
| 公司/行业 | 目标描述 | 年份 | 碳中和范围 | 是否达到

腾讯
互联
网 | 不晚于 2030 年，实现自身运营及供应链的全面碳中和。同时不晚于 2030 年，实现 100%绿色电力 | 不晚于 2030 年，实现自身运营及供应链的全面碳中和。同时不晚于 2030 年，实现 100%绿色电力 | 一、二、三 | 是

远景
科技 | 2022 年年底实现全球业务运营碳中和（范围一、二），2028 年年底实现全价值链碳中和（范围一、二、三） | 2022 年年底实现全球业务运营碳中和（范围一、二），2028 年年底实现全价值链碳中和（范围一、二、三） | 一、二、三 | 是

格林
美 | 净碳排放由 2020 年的 8 万吨降低至 2025 年的 5 万吨，到 2025 年吨产品二氧化碳排放量降低 10%，十四五期间二氧化碳减排量超过 60 万吨/年，2030 年实现碳中和 | 净碳排放由 2020 年的 8 万吨降低至 2025 年的 5 万吨，到 2025 年吨产品二氧化碳排放量降低 10%，十四五期间二氧化碳减排量超过 60 万吨/年，2030 年实现碳中和 | 一、二、三 | 是

神华
能源 | 二氧化碳排放量力争于 2025 年达到峰值，并积极探索有效路径，努力争取 2060 年前实现“碳中和” | 二氧化碳排放量力争于 2025 年达到峰值，并积极探索有效路径，努力争取 2060 年前实现“碳中和” | 一、二、三 | 是

明洋
智能 | 在 2023 年底前实现运营控制范围（范围一、范围二）碳中和 | 在 2023 年底前实现运营控制范围（范围一、范围二）碳中和 | 一、二、三 | 是

海通
国际 | 2025 年年底前实现业务营运层面的碳中和，2025 年年底前实现 100%电力消耗来自可再生能源 | 2025 年年底前实现业务营运层面的碳中和，2025 年年底前实现 100%电力消耗来自可再生能源 | 一、二、三 | 是

平安
集团 | 在 2030 年内实现运营碳中和 | 在 2030 年内实现运营碳中和 | 一、二、三 | 是

中国
石化
集团 | 以 2018 年为基准年，到 2023 年捕集二氧化碳 50 万吨/年，实现二氧化碳减排 1260 万吨，回收利用甲烷 2 亿立方米/年。确保在国家碳达峰目标前实现二氧化碳达峰，力争在 2050 年实现碳中和 | 以 2018 年为基准年，到 2023 年捕集二氧化碳 50 万吨/年，实现二氧化碳减排 1260 万吨，回收利用甲烷 2 亿立方米/年。确保在国家碳达峰目标前实现二氧化碳达峰，力争在 2050 年实现碳中和 | 一、二、三 | 是

紫金
矿业 | 到 2030 年，可再生能源使用占比达到 25% 以上，单位工业增加值二氧化碳排放比 2020 年下降 20%，力争 2029 年实现碳达峰目标，并在达峰的基础上，于 2059 年全面实现碳中和 | 到 2030 年，可再生能源使用占比达到 25% 以上，单位工业增加值二氧化碳排放比 2020 年下降 20%，力争 2029 年实现碳达峰目标，并在达峰的基础上，于 2059 年全面实现碳中和 | 一、二、三 | 是

资料来源：各企业碳达峰碳中和行动方案/社会责任报告/可持续发展报告
注：“/”表示未披露
4.3 活动层面

大型活动如演出、赛事、论坛、会议、展览等往往涉及众多活动和环节，参与人数多，持续时间长，场馆建设、活动过程等导致的原材料消耗、能源消耗都会产生大量的温室气体排放。随着双碳目标的提出，活动层面实现碳中和的需求也日益凸显。在活动层面碳中和目标的实现中，抵销机制发挥着不可替代的核心作用。例如，2022 年北京冬奥会借助绿色电力交易、开发林业碳汇、通过合作伙伴购买 CCER 和 CER、实施碳普惠机制等多种抵销机制实现碳中和目标。

专栏 抵销机制助力北京冬奥会碳中和案例

2022 年北京冬奥会是迄今为止首个碳中和冬奥会，抵销机制在“绿色办奥”全过程中发挥了举足轻重的作用。北京冬奥会使用多种绿色权益交易机制助力碳中和的实践包括以下方面：

■ 绿电交易：北京冬奥会跨区域绿电交易机制的建立实施，通过市场化直购绿电方式为奥运场馆及其配套设施提供清洁能源，保障了赛时所有场馆 100%使用可再生能源电力。

■ 林业碳汇：从申办北京冬奥会开始，造林项目就被确定为碳抵销的主要措施。京冀生态水源保护林建设工程在 2016 年 1 月至 2021 年 11 月期间以及北京市新一轮百万亩造林绿化工程在 2018 年 1 月至 2021 年 8 月期间的碳汇量均经过计量、监测并核证后捐赠给北京冬奥会组委。

■ 碳信用：中国石油、国家电网和三峡集团 3 家北京冬奥会官方合作伙伴为北京冬奥会自愿赞助经过认证签发的一定数量的 CCER，CER 等减排指标。

■ 碳普惠：开发“低碳冬奥”小程序，通过碳普惠方式吸引社会公众积极参与低碳行动，为低碳冬奥做出贡献。
2019年，生态环境部发布《大型活动碳中和实施指南（试行）》，明确了大型活动可以通过购买碳配额、碳信用的方式或通过新建林业项目产生碳汇量的方式抵消活动的温室气体排放量，实现碳中和\(^{47}\)。活动碳中和实现途径多样，与企业层面实现双碳目标可借助的抵销机制类型高度重合，因此需在制度设计中做好统筹，避免因不同层级的主体使用相同的抵销指标而导致双重计算。

为减少双重计算风险，《指南》要求用于抵消大型活动温室气体排放量的碳配额或碳信用，应在相应的碳配额或碳信用注册登记机构注销，已注销的碳配额或碳信用应可追溯并提供相应证明。并推荐按照以下优先顺序使用碳配额或碳信用进行抵消，且实现碳中和的时间不得晚于大型活动结束后1年内：（1）全国或区域碳排放权交易体系的碳配额；（2）中国温室气体自愿减排项目产生的“核证自愿减排量”（CCER）；（3）经省级及以上生态环境主管部门批准、备案或者认可的碳普惠项目产生的减排量；（4）经联合国清洁发展机制（CDM）或其他减排机制签发的中国项目温室气体减排量。通过新建林业项目的方式实现碳中和的时间不得晚于大型活动结束后6年内，且新建林业项目用于碳中和之后，不得再作为温室气体自愿减排项目或者其他减排机制项目重复开发，也不可再用于开展其他活动或项目的碳中和。

为鼓励社会公众和小微企业的低碳减排活动，多地积极探索、出台碳普惠机制。根据《深圳市碳普惠管理办法》的定义，碳普惠机制是指为小微企业、社区家庭和个人等的减碳行为进行具体量化和赋予一定价值，并建立起以商业激励、政策鼓励和核证减排量交易相结合
的正向引导机制。碳普惠机制下产生的碳普惠核证减排量可由政府机关、企事业单位、社会团体和个人自愿购买并注销，以践行绿色低碳社会责任。此外，一些碳普惠机制也允许将碳普惠核证减排量作为试点碳市场下的补充抵销指标，例如，《广东省碳普惠交易管理办法》明确指出碳普惠核证减排量可作为补充抵销机制进入广东省碳排放权交易市场，由省生态环境厅确定并公布当年度可用于抵销的碳普惠核证减排量范围、总量和抵销规则。若用于申请碳普惠核证减排量的减排项目同时参与碳信用机制、绿电交易、绿证交易等其他绿色权益交易机制，则可能导致减排成果的双重计算。为降低双重计算风险，广东和深圳碳普惠机制均明确规定对于已申报国内外温室气体自愿减排机制、绿色电力交易和绿色电力证书项目的减排项目，不再重复签发该碳普惠核证减排量。虽然这一要求可以在一定程度上避免双重计算，但对避免双重计算的承诺来自碳普惠项目业主的自我声明，缺少来自外部的监督与核查，难以从制度设计根源杜绝双重计算。

4.4 产品层面

除了自身运营层面的碳中和外，许多企业还提出了产品层面的减碳或碳中和目标。一方面，众多大型企业在自身运营的减排之外，开始对供应链设置减排目标，将供应商的减排表现纳入采购决策体系，实施覆盖产品全生命周期、全产业链的碳足迹管理，绿色供应链也成为企业ESG管理的重要组成部分。例如，苹果公司承诺到2030年实现供应链和产品生命周期碳中和。2019年梅赛德斯—奔驰启动碳中和计划，要求其供应商对汽车零部件的生产过程进行脱碳，以实现在
2039 年之前汽车产品完全碳中和的目标。另一方面，随着欧盟碳边境调节机制的提出，水泥、电力、化肥、钢铁和铝等行业的出口产品面临增加的关税负担，许多企业将采取相应措施降低产品碳排放以减少贸易成本。

专栏 苹果公司供应链碳抵销案例

苹果公司设定了到 2030 年实现碳中和的目标。苹果宣称不仅对自己的直接运营负责，也要对产品相关的排放负责。苹果建立的排放模型涵盖了产品的整个生命周期，包括原材料采购、生产制造、运输、产品的使用以及最终报废的回收处理。苹果依据详细的碳核算结果来调整 2030 年气候路线图，并在路线图指导下制定实现碳中和的计划。

在苹果公司的总碳足迹中，产品制造导致的能耗排放占比超过 70%，是苹果公司碳排放的第一大来源。为了解决这一影响，苹果与供应商紧密合作，优先减少能源消耗，并将清洁能源的使用作为供应链脱碳的重要手段。苹果承诺，到 2030 年整个制造供应链转用 100% 可再生能源电力。截至 2022 年 3 月，已有 25 个国家和地区，213 家苹果供应商承诺 100% 使用可再生能源电力制造苹果产品，这些供应商占了苹果材料、制造和组装环节的绝大部分。承诺 100% 使用可再生能源电力的苹果供应商中，包括多家中国的制造业企业。

产品层面的温室气体核算大多遵循 ISO 14067 或 PAS 2050 标准，量化产品的全生命周期碳排放。产品减排目标的实现同样可以借助外部减排努力，如购买碳信用、购买绿证、使用绿色电力等。若多个产品使用相同的减排指标，或产品、企业、活动等不同层级的主体使用同一减排指标实现减排目标将导致减排成果的双重计算。对于绿色电
力的使用，如果用于实现产品减排目标的绿色电力的零排放属性已经计入电网平均排放因子，将导致绿色电力减排效益的双重计算。

为了避免产品供应链使用抵销机制时潜在的双重计算风险，VCS 标准要求，如果项目产生的减排量将用于供应链碳抵销，项目业主或产品生产商应该在减排项目开始时就公开声明相应减排量签发所得的 VCU 可能被用于某产品，声明在整个计入期都需要保留。此外，申请签发 VCU 的减排量不得再申请碳市场配额或其他碳信用指标，也不得再申请可再生能源证书等其他类型的环境权益。
5 双碳目标下的抵销机制设计政策建议

5.1 优化机制设计，避免同类绿色权益交易机制中的双重计算

5.1.1 打通信息交换渠道，避免同类机制下的双重签发

为了避免不同的碳信用机制为同一个减排项目产生的减排量重复签发减排指标，或同一可再生能源发电量同时获得国际绿证和国内绿证，应该实现同类机制下减排指标信息的互联互通。

对于国内的各种碳信用机制，可以建立集中的碳信用机制信息平台，其中所有的碳信用机制应详细说明其范围，包括机制的管辖范围、覆盖的项目类型、减排指标的应用场景等。此外，每种信用机制均需建立一个关于减排活动和减排指标的公开数据库，允许查阅该机制下注册的每个减排活动的发生时间、地点、项目业主、项目类型、是否已获得减排指标签发以及减排指标的交易、注销等信息。在为减排量签发减排指标前，要确保减排量未在其他机制下获得减排指标。为避免减排指标双重签发的风险，最为稳妥的方案应限制一个减排项目只能选择在一种碳信用机制下注册，从而最大限度地杜绝减排指标重复签发的可能。然而，这种限制性要求可能在一定程度上对自愿减排市场的活跃度产生负面影响，同时降低项目业主和指标购买方选择的灵活性，不利于碳信用机制的持续发展。如果允许一个减排项目在多种碳信用机制下注册，则需要对减排指标进行更严格的监管，对于在多种机制下注册的减排项目，若其产生的减排量已经在一种碳信用机制下获得减排指标签发，则不得在其他机制下再次获得减排指标。可以考虑要求一个减排项目在同一时期产生的减排量只能在一种碳
信用机制下申请减排指标，而允许减排项目在不同时期产生的减排量在不同的碳信用机制下申请减排指标。

对于减排量在国内和国际碳信用机制下重复获得减排指标签发，以及可再生能源电力同时申请获得国内绿证和国际绿证的问题，建立集中的机制信息平台这一方案具有很大的沟通和实施难度，实际可行性较低。针对这种情况，应该要求申请减排指标或绿证的主体承诺不在国际机制下申请相应的环境权益。在条件允许的情况下对每一项签发申请进行审查，与各类国际机制的管理机构进行沟通确认，验证其他机制是否已经为相同的减排量签发了减排指标。同时，仍应该积极争取与同类的国际机制开展交流合作，对于中国项目申请签发减排指标的相关信息实现互联互通，共同努力确保签发高质量、保障环境完整性的减排指标。

5.1.2 对减排指标进行持续追踪、报告与监督

抵销机制应建立稳健的追踪系统。对减排指标签发、转让、使用、注销的全过程进行持续追踪、报告与监督是有效防止减排指标双重签发和双重使用的关键手段。减排指标相关信息的充分透明是对减排指标进行追踪和监督的一个重要前提，为满足这一要求，可以为每一个减排指标建立唯一的序列号，序列号中需要包括该减排指标的综合信息，例如产生减排指标的机制和项目名称、发生减排行动和使用减排指标的地点、发生减排行动和发放减排指标的时间、减排活动的项目编号等。机制设计应确保任何时候都只有一个主体持有减排指标，减排指标出售后，指标的出售方不得再将这部分减排量用于实现自身
的减排目标；减排指标的购买方使用外部减排指标抵销其碳排放后，
要对减排指标进行注销，避免减排指标的双重使用。

使用抵消机制的市场主体还应定期向相应的管理机构报告其参
与市场机制的信息，包括减排指标的签发、转让、使用、注销等信息，
以及减排指标产生的地点、活动、项目、年份等其他相关信息，确保
管理机构能够全面及时地监测和核查交易的减排指标，避免减排成果
的双重计算。鉴于此，应设置统一的报告规则，明确对追踪和报告的
具体要求，包括报告的内容、格式、程序和时间等。此外，还应完善
第三方核查机制，加强对报告内容的监管和审查，由指定的监管机构
对报告信息进行汇总和一致性检验等 53。

5.1.3 完善绿色电力相关的排放核算规则

外购电力导致的间接排放是众多行业碳排放的最主要来源之一，
电力排放的核算是连接电力消费和碳排放计量的关键桥梁，也是碳核
算体系中十分重要而复杂的一环，在不同的核算目的、适用主体和应
用场景下涉及不同的排放因子。目前，我国碳排放核算体系中针对绿
色电力相关的排放核算规则尚不成熟，可能导致绿色电力环境权益的
双重计算，需要进一步完善。

2013-2015 年，国家发改委分三批印发了发电、钢铁、电解铝、
水泥等 24 个行业的温室气体排放核算方法与报告指南，为行业和企
业层面的温室气体排放核算提供了明确的方法学框架。在企业外购电
力的核算中，没有对电力来源进行区分，统一使用区域电网年平均供
电排放因子计算电力排放。虽然在近期对电解铝以及水泥生产企业温
温室气体排放核算方法与报告指南修订的讨论中，一种备选的方案是将重点排放企业消费绿电对间接排放的影响纳入核算规则，在外购电力排放核算时对绿电电量消耗数据进行扣除，即相当于将外购绿色电力对应的排放因子计为 0，但最终修订后的指南是否会采用这种核算方法还有较大的不确定性。

在企业范围二级排放核算框架中，可以考虑将使用绿色电力对碳排放核算的影响纳入考量，对不同来源的电量加以区分，分别使用特定的排放因子计算排放量，其中绿色电力的排放因子一般可计为 0。在核算绿电消费企业外购电力排放时已经对企业购入绿色电力对应的减排量进行了扣减，因此需要相应地调余下电网的加权平均排放因子，将这部分绿电电量扣除后重新计算电网排放因子，即电网余下电量的平均排放因子应为发电碳排放总量与扣除绿电后电网剩余电量的比值。

图 5-1 余下电网排放因子调整示意图
现阶段我国绿电交易规模较小，使用全国或区域电网平均排放因子进行核算造成的偏差微乎其微；随着绿色电力在电力结构中的占比不断提高及其全面参与市场交易，继续使用未调整的排放因子计算电力排放将导致严重的双重计算。主管部门应适时调整更新电网排放因子，以确保绿电购买方对绿色电力环境权益和减排属性的唯一申明，避免双重计算风险。在实践中，余下电网平均排放因子的计算和调整具有很大的难度和复杂性。未来可再生能源消费量的归属和核算将以绿证为唯一的凭证，随着绿证覆盖范围的扩大以及绿电、绿证相关机制的完善，可再生能源电力的环境属性都将通过绿证获得唯一的权属证明，在这种情况下，可以将电网中火电的平均排放因子视为余下电网平均排放因子进行核算。

5.2 加强协调衔接，避免多种绿色权益交易机制交叉重叠

5.2.1 明确各种绿色权益交易机制的定位与边界

我国自愿减排量交易、绿电交易、绿证交易、用能权交易等多种绿色权益交易机制之间存在密切的关联，几种机制的参与主体高度重合。目前，各类机制的核心目标与定位、覆盖范围和规则设置等仍不清晰、不完善之处，建设基础和发展阶段不尽相同，不同机制之间的边界尚未完全厘清。各类机制之间的交叉重叠一方面增加了企业履约的经济负担，另一方面可能导致同一减排成果的双重计算。此外，不同交易机制分属不同的主管部门管理，部门间壁垒的存在进一步增加了机制协调的难度和复杂性。

后续抵销机制的完善应重视顶层设计，避免政策重叠对企业的重
复管制和减排成果的重复计算，需要加强相关主管部门之间的沟通和协作，从全局角度统筹规划，厘清不同政策机制之间的关系，明确各种机制的定位和边界。

对于碳排放权交易与碳信用机制之间的交叉，减排成果双重计算的风险来源于纳入碳排放权交易管理的重点排放单位通过在其内部实施减排项目，同时获得碳市场配额盈余和用于抵消的减排指标。为了从根源避免这一问题，应明确规定对于纳入全国或各试点碳排放权交易体系管理的重点排放单位，在其排放边界内实施的减排项目产生的减排量不得申请 CCER 等碳信用。

对于碳排放权交易与用能权交易之间的交叉，应该避免同一市场主体被同时纳入碳排放权交易和用能权交易市场。例如，2022 年 4 月发布的修订版《河南省用能权有偿使用和交易试点实施方案》已明确规定，纳入碳排放权交易范围的用能单位不再参与用能权交易。如果一家企业被同时纳入碳排放权交易和用能权交易市场管控，那么该企业的节能行为将会同时增加企业的用能权指标和碳配额盈余，而能源消耗与碳排放直接相关，二者之间存在直接关系，由此会造成减排成果的双重计算。针对这一问题，需要在机制设计中明确碳交易和用能权交易各自的管控对象和范围。鉴于目前我国用能权交易市场建设仍在小范围探索的起步阶段，应该对用能权交易机制的边界、定位等关键因素展开充分论证，避免减排成果的双重计算，同时为企业减轻不必要的负担。
专栏 广东省碳排放权交易与用能权交易协调案例

为了充分发挥碳排放权交易与用能权交易各自在节能减排中的作用，避免二者之间机制交叉重叠导致的减排成果双重计算，广东省对其试点碳交易市场和用能权交易市场设置了差异化的管控范围。针对年度新增固定资产投资项目的用能行为，将新增固定资产投资项目的用能核配和节能减排审查制度衔接起来，将新增用能部分的能耗效率通过用能权交易市场进行管控。新增的固定资产投资项目投产运行满一年后转为存量项目，通过碳交易市场进行管控。即用能权交易市场针对新增固定资产投资项目的用能行为，而碳排放权交易针对现有存量用能企业的碳排放。

为加强碳交易与用能权交易之间的协调衔接，广东省还探索建立了碳交易与用能权交易市场的联合履约机制。年度新增固定资产投资项目运行满一年后，如果其实际用能需求低于所获得的用能指标，则在其转化为存量项目后，剩余的用能权配额可以按照预先确定的比例转化为碳配额。用能权指标转化为碳排放配额后，可以出售给碳排放权交易市场有需求缺口的企业，用于履行碳排放配额清缴义务。对于持有富余碳排放配额的重点用能企业，也可以将碳配额转化为用能权指标，在用能权市场出售给有需求缺口的年度新增固定资产投资项目。

上述机制设计避免了管控对象的重叠，提高了机制运行的效率和灵活性，为确定碳排放权交易与用能权交易机制边界，解决双重计算问题提供了一套有益的参考方案。

对于碳信用机制与用能权交易之间的交叉，双重计算问题的根源在于用能权交易市场管制下的企业将其实施节能项目获得的减排量申请了CCER。因此在抵销机制的规则制定中，应该不允许用能权交
易市场管控边界内开发的节能项目申请 CCER。在对申请温室气体自愿减排备案的项目进行审查时，需注意相关的节能项目是否被纳入用能权交易市场管控，若已纳入用能权交易市场管控，则节能项目不能获得备案。

对于 CCER 与绿电和绿证交易之间的交叉，目前新的 CCER 备案尚未重启，随着可再生能源平价上网的加速推进，未来常规可再生能源发电项目可能将难以通过 CCER 额外性论证。而可再生能源发电项目的环境价值可以通过参与绿电或绿证交易以更直接的途径进行变现，因此可以考虑限制新的可再生能源发电项目获得 CCER 备案，仅允许可再生能源电力以绿电或绿证交易的形式实现环境价值的变现，确保绿色电力环境权益的唯一性。在碳排放核算中，购买绿电或绿证的主体可以依据绿证的等效减排量抵销其范围二温室气体排放，并在使用绿证后对其进行注销。

目前，我国全国碳排放权交易市场仅覆盖发电行业，用能权交易和绿色电力交易还处于试点阶段，各类市场机制覆盖的行业和地理范围存在差异。不同绿色权益交易机制之间的有效协调存在较大的难度和复杂性，为了给不同机制的协调提供有益探索和经验借鉴，可以在有相关市场基础的地区进行同时开展碳交易、绿电和绿证交易、用能权交易的综合性试点，探索不同绿色权益交易机制协调衔接的科学路径。

5.2.2 建立统一的管理平台，实现数据互通

我国现存的各类绿色权益交易机制分别由不同的主管部门负责
管理，各主管部门间缺乏有效的沟通和协调，导致不同机制之间存在信息壁垒，加剧了减排成果双重计算的可能性。

在抵销机制设计中，应加强不同绿色权益交易机制之间的数据互通与共享，打破各类机制“登记簿”之间的共享壁垒，形成统一的国家级信息管理平台，确保各类机制下碳信用指标、绿证、用能权指标的签发、交易、使用、注销等相关信息对各主管部门的透明和对称，实现信息流的同步更新。实现数据互通的核心要求在于对同一个减排活动产生的减排成果设立唯一标识，例如，对参与绿色权益交易机制的一个可再生资源发电项目产生的绿电发电量及相应的减排量赋予特定的唯一编号，这一编号在碳信用机制、绿电交易、绿证交易等各类机制下通用，均可直接定位到对应的发电量、减排量及项目来源等信息，进而避免同一减排成果在不同类型的绿色权益交易机制下重复获得认证。

5.3 完善制度建设，避免不同层级主体重复计算减排成果

5.3.1 明确各层级减排目标考核规则，保证层级内部核算完整性

不同层级主体使用绿色权益指标完成各自减排目标时存在减排成果双重计算的风险，这在很大程度上是目前针对各层级的碳排放核算方法及减排目标考核规则体系不明确、不衔接导致的。在现有的碳排放核算方法与标准中，很少涉及关于履约主体使用外部减排成果对其自身以及更高层级主体排放量影响的规定。例如，企业出售或购买CCER后，是否会影响其所在区域的排放核算和减排目标考核；对于绿色电力的跨区域交易，其环境价值的归属如何确定等，这些关键问
题在现有的碳核算方法中缺乏明确的规定，这种模糊性导致了巨大的潜在双重计算风险。

在我国着力推进双碳目标实现，建立和完善绿色权益交易机制的过程中，应该加快碳排放核算标准体系的建设。对于省级行政区、纳入碳排放权交易体系管控的重点排放单位等具有强制减排义务的主体，应尽快制定相应的减排目标考核规则体系，在规则中明确对于绿色权益指标使用的相关规定以及外部减排成果的权属确定与核算标准。碳排放统计核算是一项复杂而庞大的系统工程，涉及多个层级、多类主体、多种维度，不同对象、不同用途的碳排放核算边界和方法也不同。考虑到现实条件下统计口径与核算方法的差异、数据收集的难度等因素，可以允许不同层级目标考核规则中对外部减排成果的核算采用不同的核算边界条件和处理方法，但必须保证同一层级内部碳排放核算的一致性，在同一维度的减排目标考核中避免对实际减排成果的高估。例如，对于未纳入碳市场管控的企业、组织的自愿减排目标承诺以及活动、产品等层面的减排目标考核，短期内制定并推广通用的统一考核规则可能还具有较大的难度，但可以通过制定行业、团体标准等措施尽可能保证各类主体在碳排放核算中有一致的参考标准；同时应该鼓励相关主体采用更加稳健的核算方法和规则，在履行减排承诺时确保减排量的真实性、唯一性。

5.3.2 要求市场主体承诺没有双重计算，加强信息披露

主管部门可以要求所有申请减排指标的市场主体签署一份声明，承诺其不会为同一减排成果重复申请减排指标，且在转让减排指标后
不再申明减排指标的所有权，不将这一减排成果用于实现自身的减排目标；同时也要求所有需要借助外部减排成果实现减排目标的市场主体承诺避免双重计算。例如，《广东省碳普惠交易管理办法》明确规定申报碳普惠核证减排量应承诺不重复申报国内外温室气体自愿减排机制和绿色电力交易、绿色电力证书项目。为了保证市场主体承诺的可信度，还需要建立完善的监督核查机制，对市场主体自主声明的真实性开展评估。这一声明可以通过行政手段强制执行，在市场主体违规的情况下，监管机构可以对其施以相应的处罚。

抵销机制的主管部门应加强针对减排指标签发、交易及其履约相关的信息披露频率和信息透明度，规范抵销机制信息披露管理办法，建立统一的信息发布平台，改善信息不对称问题，进而降低减排成果双重计算的风险。
参考文献

3. 生态环境部 (2021). 碳排放权交易管理办法（试行）。
 https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202101/t20210105_816131.htm l
4. 国家发展改革委 (2021). 关于印发《完善能源消费强度和总量双控制度方案》的通知。
5. 国家发展改革委，国家能源局 (2021). 关于完善能源绿色低碳转型体制机制和政策措施的意见。
 https://epub.wupperinst.org/frontdoor/deliver/index/docId/6264/file/6264_Carbon _Markets.pdf
 www.offsetguide.org
 https://www.goldstandard.org/sites/default/files/documents/future_proofing_the

37. 刘航 & 温宗国 (2018). 环境权益交易制度体系构建研究. 中国特色社会主义研究(02), 84-89.
 https://www.mee.gov.cn/zcwj/zcjd/202203/t20220315_971493.shtml
 http://www.gov.cn/zhengce/zhengceku/2021-10/26/content_5644984.htm
 https://sustainability.alibabagroup.com/sc
46. 北京冬奥组委 (2022). 北京冬奥会低碳管理报告（赛前）.
47. 生态环境部 (2019). 关于发布《大型活动碳中和实施指南（试行）》的公告.
 https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201906/t20190617_706706.htm
 http://meeb.sz.gov.cn/xxgk/zcfg/zcfg/hblgfxwj/content/post_9997236.html
 https://www.gd.gov.cn/zwgk/gongbao/2022/11/content/post_3919087.html
Disclaimer

- Unless otherwise specified, the views expressed in this report are those of the authors and do not necessarily represent the views of Energy Foundation China. Energy Foundation China does not guarantee the accuracy of the information and data included in this report and will not be responsible for any liabilities resulting from or related to using this report by any third party.

- The mention of specific companies, products and services does not imply that they are endorsed or recommended by Energy Foundation China in preference to others of a similar nature that are not mentioned.