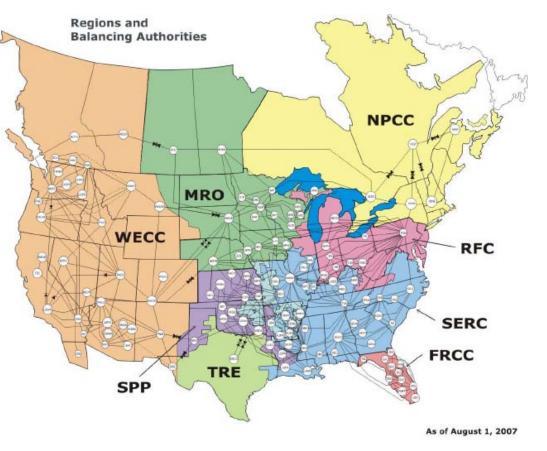


4: Transmission Planning for Renewables

U.S. Approach and Case Studies

REACK & VEATCH

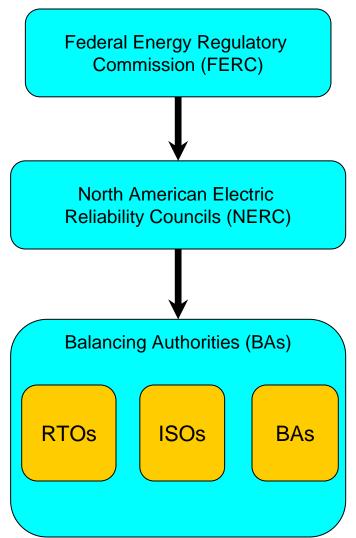
Background of U.S. Transmission System


- Federal Energy Regulatory Commission (FERC)
 - Regulates interstate transmission grid, approves market rules, and regulates rates for transmission service.

• NERC Regional Councils

 Establish operating standards to ensure system reliability

Balancing Authorities (BA)


- Manage system operation
- Establish specific operating requirements and criteria for participants

Background of U.S. Transmission Planning for Renewables: Challenges

- Transmission planning and approval process is fractured
 - > FERC, NERC, Balancing Authorities
 - State permitting processes, Environmental considerations
 - Coordination for planning among authorities and agencies can be challenging
- Public opposition to new lines
 - > NIMBYs "Not In My Backyard"
 - BANANAs "Build Absolutely Nothing Anywhere Near Anything"

Background of U.S. Transmission Planning for Renewables: Challenges

- Transmission for renewables different than conventional generation—not always "least cost" option.
 - Oftentimes renewables are policydriven additions rather than lowest system cost resources
 - Transmission needed to deliver these resources to loads may not satisfy usual requirements for transmission need and economics
 - Variable delivery resources require additional operating requirements of balancing authorities

- Many renewables are remote long-distance transmission to deliver this energy requires:
 - Close coordination among Balancing Authorities to develop transmission to access these resources
 - New rules and products by Balancing Authorities and NERC regions to operate systems to integrate these resources
 - New FERC policies to allow for transmission development criteria and cost recovery

Need for Collaborative Transmission Planning Approach

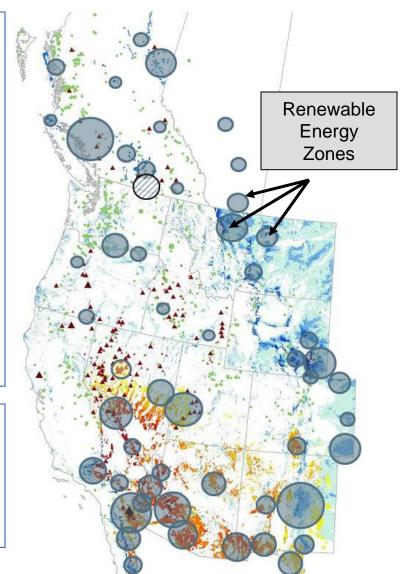
- Engage all stakeholders in planning process prior to developing specific transmission proposals (utilities, regulators, developers, environmental, transmission operators, etc.)
 - > Develop shared understanding of requirements and goals
 - > Identify important development issues
 - Build consensus for transmission before permit applications filed to reduce permitting time and litigation
- Coordinate resource development and transmission expansion to satisfy multiple needs
 - > Prioritize development to access most cost effective resources
 - > Minimize environmental and social impact of development
 - Prioritize goals for regulators
 - > Provide signals to developers to focus development

Analytical Approach in Support of Conceptual Transmission Planning for Renewables

- 1. Identify goals/objective for analysis and geographic scope
- 2. Identify, quantify and value renewable energy resources
- 3. Develop resource and transmission scenarios
- 4. Evaluate scenarios based on objective

Examples of Recent Planning Efforts and Goals

Western Renewable Energy Zones (WREZ)


- Goal: Provide entities within the Western Interconnection with information and tools to identify attractive opportunities for transmission development
- > Coverage area: WECC
- Collaborative process coordinated by the Western Governors' Association, including 11 U.S.
 States, Western Canada and Baja Del Norte Mexico

California Renewable Energy Transmission Initiative (RETI)

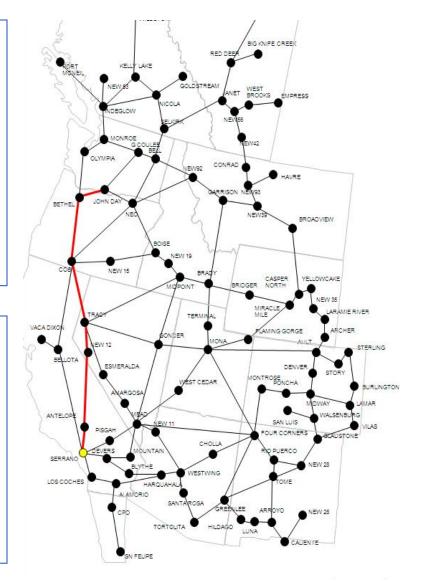
- Goal: Identify <u>least cost and least</u> <u>impact</u> development zones and transmission projects required for California to meet renewable development targets.
 - Ensure competition, generation diversity
 - Are developable now and in next 10 years
- Coverage area: California and surrounding states
- Collaborative process involving state agencies, utilities, ISO, public interest groups, project developers and many other stakeholders

Identify Renewable Energy Resources

- Assess raw resource
- Determine developable potential
 - Practical limitations
 - Environmental considerations
- Characterize and model renewable generator performance
 - Generating capacity
 - Time-of-day (TOD) and seasonal energy production profile
- WREZ identified generalized 'zones' of renewable energy potential
- RETI identified individual projects, including planned and 'proxy' projects

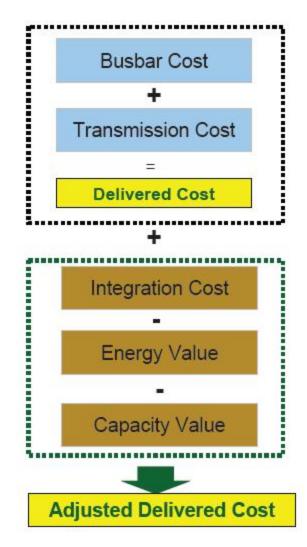
R/

BLACK & VEATCH

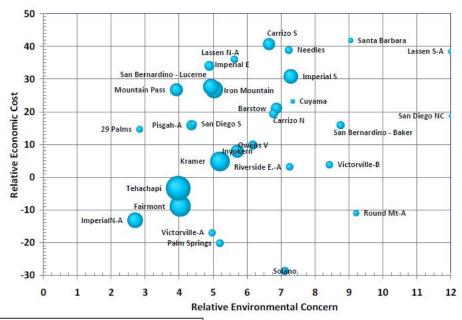


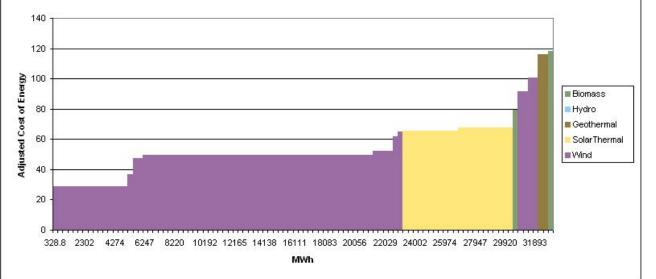
Identify Renewable Energy Resources

Develop Resource and Transmission Scenarios


- Develop "conceptual" transmission system based on existing and planned rights-of-way
- Identify load sinks
- Determine transmission requirements to connect resources to load
- Quantify the cost of incremental transmission
- WREZ model allows user to define scenarios (resource, load area, transmission route) and find cost
 - Able to create supply curve of all resources available to a load area
- RETI determined cost of transmission from each project to nearest load zone

Evaluate Results – Resource Cost Determination


- Busbar Cost: levelized cost of generation
- Transmission cost: levelized cost of getting energy to load
- Adjusted delivered cost: the net cost of the energy to a load zone
 - Considers value and cost of generation profile



Evaluate Results

Bubble chart ranks RETI zones based on <u>adjusted cost</u> and <u>environmental impact</u>

Supply curve ranks the adjusted cost of a portfolio of resources to a load zone in the WREZ model

Other Transmission Planning Initiatives

- In addition, several Initiatives Completed and Underway to Promote Regional Transmission Development for Renewables
 - DOE-sponsored NERC-Region Initiatives Regional Transmission Expansion Planning (RTEP)
 - > Clean Renewable Energy Zones (CREZ) ERCOT
 - > JCSP
 - > SPP
- Note: to date all initiatives have been voluntary organizations

Lessons Learned from Planning Efforts

- Wide regional coverage of interconnected areas, especially for development of renewables that are distant from load centers
- Stakeholder involvement from the beginning, so goals and understanding of issues are aligned
- Establish shared goals and objectives for study (early)
- Renewable energy "zones" rather than specific projects is appropriate level of detail for planning purposes
- Quantitative assessment of goals and objectives

Evolution and Future of Transmission Planning Tools

- Conceptual planning has evolved from basic resource assessments and spreadsheet models
 - Resource assessments and transmission are analyzed though GIS mapping tools.
 - Newer models are user-friendly, more interactive, scenariodevelopment tools.
- Future of conceptual renewable planning may begin to incorporate grid considerations such as:
 - Consideration of existing capacity
 - Grid integration/operational issues
 - > Grid reliability planning

Designing a Method for Use in China

- Engage stakeholders in planning process prior to developing transmission expansions
- Coordinate resource/project development and transmission expansion to satisfy multiple needs
- Identify goals/objective for analysis and geographic scope
- Identify, quantify and value renewable energy resources
- Develop resource and transmission scenarios
- Evaluate scenarios based on objective