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Distribution System Impacts
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Bulk Power System Stability
j( _ij /% éj‘ﬁ% SE’ 7_'1

PV can impact frequency response (similar to wind) YGRE] LA iRy, (3
l Uﬂ:ﬂ F)
PV interconnect with inverters J6{R 50 2 a5 FHER
- Inverters have no mechanical inertia 7 2- a8 1% A MR I

- System inertia and frequency regulation are reduced as conventional generation is de-committed. &
MREVIR & g US , REIRIEATARAE ST R

- Reduced inertia results larger frequency excursions from power imbalances R YRS
G TR R BB R R R B 5

- PV systems can add frequency control to maintain frequency petformance YR RS R] LAKE
IR R AR R T E

PV IEEE 1547 standard requires inverters to trip during grid events PV IEEE 1547
PR SR I3 AR A FEL X H DR [ A et ik ]

o If large portion trips at same time, reliability will be reduced Y15R1R 221 ax [F] B Bk E], 1%
Ree-A 1 B IO AT S

- Low voltage ride through (LVRT) standards needed for high PV 5 L YGAR FE TG K 28k
(LVRT) Rt

Source: Achilles et al 2008 4



Contribution of Solar to Resource Adequacy
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Penetration Wind + CSP + PV Wind only CSP only PV only
10% wind, 1% solar 17.1% 12.6% 90.8% 32.1%
20% wind, 3% solar 18.5% 11.5% 92.7% 30.3%
30% wind, 5% solar 18.9% 11.0% 92.6% 29.0%

Source: GE 2010

* Solar capacity credit can be higher than wind in places where peak loads are summer cooling
loads FEME{H AT A B FHIE MR, SCRAREREER LIS T XEE
- Capacity credit will be low in systems with peak loads at night I&{E F AT [E] A R
%, SCHNARERFFERYE

* Adding at least 4 hours of thermal storage can increase the capacity credit of CSP to the
capacity credit of a conventional plant (Madaeni et al 2011)

B4/ R R RG] IRt A BB ERBEM KB — S



Scheduling Solar Resources and Operational Integration
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Sample of existing and ongoing studies of system operations with solar
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GE, 2007

Enernex,
2009

GE, 2010

CAISO,
2010

Navigant,
2011

CAISO,
ongoing

CA, WECC

Xcel, CO

WestConnect,
WECC

CA

NVEnergy,
NV only
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(1) CA Intermittency Analysis Project (2) DA forecast error
based on the monthly average of the actual solar (3) 15-
min PV data from 13 sites with synthesized 1-min data

(1) Day-ahead forecast based on previous day production
profile. (2) No within-hour variability or uncertainty (3)
Estimated inefficiencies in system dispatch caused by
uncertainties in DA solar forecast

(1) Western Wind and Solar Integration Study (2) Hourly
satellite derived solar data with synthesized 10-min
variability (3) Day-ahead forecasts from meso-scale models

(1) 20% RPS case (2) DA forecasts from [??7] (3)
Evaluation of existing fleet capability (4) Quantification of
regulation and load following need (5) Existing fleet can
integrate renewables

(1) Costs associated with PV wanting to connect to system
(2) sub-hourly reserves (2) includes large plants (300MW)

(1) 33% RPS cases (2) No day-ahead forecast error (3)
Quantifies load-following and regulation needs (4) Adds
CT’s to mitigate violations in model



Motion Vector Forecasts @@%#ﬁ{lﬂﬂ

Filtered Correlation Vectors
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FI1G. 3. A frame of the satellite imagery used in the demonstration FIG. 6. Displacement vectors derived from images 0.5 h later
correlation analysis. Data is over the central and eastern United States, (and processed through consistency check).

valid at 1230 UTC 20 November 1991, _
Source: Hamill and Nehrkorn (1993)
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Sample of Solar Forecast Methods
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= = | orenz et al., 2004 (Single station; Persistence forecast)
== | orenz et al., 2004 (Single station; Satellite-based motion vector forecast)

Perez et al., 2007 (Single station; Best fit to National Digital Forecast Database-derived irradiance)
Lorenz et al., 2009 (Single station; European Centre for Medium-Range Weather Forecasts)
Lorenz et al., 2009 (Ensemble of stations; European Centre for Medium-Range Weather Forecasts)
Hammeretal. 1999 (Ensemble of stations; Persistence forecast)

® Hammeretal. 1999 (Ensemble of stations; Satellite-based motion vector forecast)

*Relative Root Sq. Mean Error of Global Solar Insolation Forecast

e Persistence and MVF are
adequate for short-term (<4
hours) KL ENZ B K E TN
WITER AR (/T4
/NEY) TR

e Numerical weather models
petform better for longer

term forecasts FE RS
A AR A PR SR B g

 Forecast errors for ensemble
of solar plants will be lower
than forecasts for individual
plants FEAAR B BETRIZRZE /)N
TEA R E



Many options available for generating solar forecasts

A FHEE & BB BINE AR A TR IME

 Long-term (Multi-hour to multi-day horizon): |8  (BU/NEFELECR)
- National Digital Forecast Database: 3-h basis for up to 3-days-ahead and on a 6-
h basis up to 6-days-ahead FEZREFTREFEZE: T 3/NTEFEH =K
W, BT o/ NFEIRHI 7S KIT
- Meso-scale models: downscale Reanalysis weather data for relative humidity,

convert into estimate of cloud cover (used in WWSIS) HH R AR . EidfER

FRAR BRI ENEE, TRENEEE (MAHAEEEXEEKH
REFE MBS )

e Short-term (Less than multiple hour forecast horizon): 588 (/N 22 P B TRIN)
- Persistence of cloudiness =) =J54EM:

- Statistical methods using real-time output from multiple monitoring stations %
T2 AN LB B e T 7 s

- Motion vector forecasts (MVF) iz zh & il

- On-site sky imaging Bl K 2= iR
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Management of short-term variability
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Source: Navigant 2011

» Flexible resources manage variability around schedules

FH R IERE S sl

e Dispatch, Automatic Generation Control (AGC) and Contingency reserves must be

able to keep-system in-balance

JHRE. B I AGORIRY 24 T LA R 55 T4 1



Example of Short-term System Balancing
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Example of Short-term System Balancing
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A Regulation covers both minute to minute
variability and 5-min forecast error
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Load following covers both 5-min vatiability and hour-ahead
forecast etrror
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Increased Variability and Uncertainty
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Aggregate Variability of Multiple Sites Is Significantly Smoother than
Individual Sites
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1200 - The lack of correlation in changes
solar over short time scales means
that the variability of the

1000 - aggregated multiple sites is
significantly smoother than the
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Source: Mills and Wiser (2011) 15



Regulation Requirements with Different Deployments and Penetration

of PV
ANFEEER I K Eo B 1 Y B R
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Diverse deployment of PV => regulation increases at 3% of nameplate PV capacity J&{R 2 Ff

PR = R T AL 3%

Source: Navigant 2011
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Load Following Requirements with Different Deployments
and Penetration of PV
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Integration Costs Associated with Day Ahead Forecast Errors

H B HER Z - B FH W A

EnerNex Corporation. 2009. Solar Integration Study for Public Service Company of Colorado. Denver,
CO: Xcel Energy, February

Table 3: Summary of Solar Integration Costs in $/MWh for Base Case Gas Assumption

) Solar Nameplate Solar Energy Integration Cost
Scenario .
Capacity (MW) (GWh) (S/MWh of Solar Energy)
A 200 626 1.96
B 400 1044 1.49
E 400 948 1.25
C 600 1484 5.58
F 600 1531 6.06
D 800 1944 5.15

e Solar is a mix of PV and CSP depending on scenario

HAE P RPHREROR CBIRAICSP) A& L ANH]
o System has peak load of 7 GW, 3-12% penetration on capacity basis XL Y60

TGW, K PHREFA A HE d73-12%
» Integration cost is based on day-ahead forecast error

A A T R T H AT R 2=
19



Integration costs based on increase balancing reserve requirements
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PV & DG Integration Costs
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M PV Curtailment £

[ Heat Rate #iFE=R

150 200 272 342 542 600 942 1042

PV & DG Installed Capacity (MW)
SR A A A AL (MW)

20

Source: Navigant 2011



Estimates of Short-term Balancing Costs are Impacted by Geographic

Diversity 58 2

218 T A T 52 i 72

%
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Increased Balancing Reserve Costs ($/MWh)

Reserves Constant Throughout

Reserves Change

1
1
1
Time Scale Year I with Position of Sun
Solar Wind i Solar
1 Site | 5 Sites 25 Site Grid
1-min Deltas | $16.7 | $4.8 | $1.2 | $0.9 1 $0.8
:
10-min Deltas | $17.3 $4.4 $1.0 $0.2 | $0.7
1
|
60-min Deltas | $5.0 | $16 | $0.6 | $0.5 ! $0.5
1
|
Total Cost $39.0 | $10.8 | $2.7 | $1.6 | $1.9

These costs address only short-term variability and do not include many other costs and benefits

associated with solar and wind IXLE K EFTRIWE 50tE, 615N EERIA FHBELT E AL 5L

AHIY it

Cost estimates are developed using simple approxzmatzons and are only meant to illustrate relative

changes in cost JRANGE Y ETHERTTLUE, R

Source: Mills and Wiser (2011)
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Example costs based on
10% penetration of
solar or wind on
capacity basis Z&4
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K FHEEEXUAE & =
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Why are solar and wind
costs compatrable?

AT 2 REEFKER
REHY A A2 AT LY ?

Reserves can be held in
propottion to clear-sky
insolation for solar

KEHRERT & A W]
LA RS R KRR ST
IKPZHE

Reserves assumed to be
held at same level all

year for wind X\ FE P
e HBRIERLE
REFFE—7KF
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