U.S. Clean Air Act: What Makes It Work

Richard Ayres

Ayres Law Group

John Walke

Natural Resources Defense Council

Accomplishments of U.S. CAA

- Major reductions in emissions despite substantial growth in population and economy since 1970
- Large improvements in air quality in all the pollutants that affect public health
- Significant drop in exposure of the natural environment and people to sulfates

U.S. Emission Reductions – 1980-2006

Greatly Reduced Concentrations of Pollutants in the Ambient Air

Major Reduction in Sulfate Exposure

1980 Sulfate Concentrations

2006 Sulfate Concentrations

1980-2007 – Emissions Decrease Despite Growing Population, Economy

Regulatory Structure-Air Quality Management System

- Establish objective, science-based air quality standards
- Measure air quality to compare with standards
- Deduce how much emission reduction needed to attain air quality standards
- Establish regulatory programs to make reductions
- Permit, monitoring, reporting & enforcement systems to assure compliance

CAA Regulatory Scheme: Air Quality Management System

- Why air quality standards ("NAAQS")
 - Establish public health/environmental objectives of program
 - Basis for managing air quality
 - Allow public & government to assess progress
 - Prevent "Pollution Competition"

Air Quality Management System

- Air quality standards should be based on public health & environmental science
- Should not be balanced against economic cost; economic balancing occurs during implementation, not standard-setting
- Expressed as national numerical limits on pollutants in ambient air

Air Resource Management Objectives

- Attainment of air quality standards where air resource already overused
- In areas where air quality better than air quality standards, management to –
 - Protect special resources (Grand Canyon)
 - Slow/prevent worsening air quality
 - Maximize potential for economic growth

Regulatory Structure – Air Quality Management System Programs

- "Command and control"
 - Motor vehicles
 - Large factories
 - Land use
- Pollution trading -- "cap & trade"
 - Acid rain control
- Emission taxes
- Government benefits, privileges (e.g., access to HOV lanes)

Cooperative Federal-State Control

- Federal regulation of
 - Motor vehicles

- Consumer products
- New large industrial facilities
- Existing/new sources of acid rain pollution
- Toxic air pollution
- Ozone depleting chemicals
- Federal approval of state programs
- Federal & citizen enforcement of approved state requirements
- Federal emergency authority

Cooperative Federal-State Control

- State regulation of existing industrial sources
- States regulate land use, vehicle use, inspection/maintenance programs
- States may adopt more stringent requirements than federal; but states must follow stronger federal laws
- States, citizens may sue EPA for nondiscretionary duties and statutory violations
- California receives special treatment due to severe air pollution problems

Market-Based Systems

- First used for acid rain pollution from power plants
- Complements direct regulatory air quality management system
- Congress determined acceptable emission levels in 1990 for 2 phased in "caps"
 - National cap (2010) = 8.9 million tons of SO_2 , down from \approx 17.3 mt in 1980
 - Active trading market
 - Emissions now at about 8.9 mt
 - Implementation & enforcement relatively easy
 - Apparently economically efficient
- Cap set too high to force technology development

Market-Based Systems: One Tool in the Tool Box of Pollution Controls

- Caps not directly connected to public health standards
- Not appropriate where localized effects important e.g., highly toxic emissions
- Economic efficiency largely evaporates when greater emission reduction required
 - Acid rain reduction only about 50%
 - If reduction 95%, every unit must have scrubber
- Continuous monitoring essential to integrity

Technology-based standards

- Federal standards for new and many existing ("modified") industrial sources
- Adoption of "Best Available Control Technology" required if source upgrades production equipment ("New Source Review")
- State control over technology standards for existing unmodified industrial sources

Technology-based Controls

- Type of direct regulation used to supplement air quality management
 - Identify industrial source category
 - Determine achievable emissions reductions with BACT, considering cost and technical feasibility
 - Establish regulations requiring BACT
 - Compliance assurance requirements (monitoring, recordkeeping, reporting)

Technology-Based Controls

- Widely used in US
 - Motor vehicle emissions standards
 - "New Source Performance Standards"
 - Case-by-cast BACT
 - Toxic air pollution standards
 - Ozone-depleting chemicals

Technology-Based Controls

- Benefits of technology-based controls
 - Established without regard to air quality standards, ambient air quality monitoring, or demonstrated relationship between source & air quality
- Problems with technology-based controls
 - Not good at forcing technology development
 - Economically inefficient
 - No direct connection with air quality management objectives

Technology-Forcing Standards

- Used to regulate ozone depleting chemicals under Montreal Protocol and U.S. CAA
- Statutory deadlines for end of production & consumption of ODP products
- Has driven manufacturers to develop new products with low or zero ODP

Construction Permits

- Permits to construct new facilities/equipment, or upgrade existing facilities/equipment, are required for 28 large industrial categories that emit or have the "potential to emit" 100 tons per year or more of regulated pollutants. These include power plants; cement, and iron and steel plants; oil refineries; and chemical plants.
- Construction permits also are required for other industrial facilities that emit or have the potential to emit 250 tons per year or more of regulated pollutants.

Construction Permits

- Regulated air pollutants requiring construction permits include sulfur dioxide, nitrogen oxides, PM₁₀, PM_{2.5}, volatile organic compounds, lead and carbon monoxide.
- Construction permits for existing facilities are required for emissions increases ranging from 40 tons per year (SO₂, NO_x & VOCs) to 15 tons per year (PM₁₀) to 0.6 (lead).

Construction Permits

- Prior to construction, a company must permit and install advanced pollution control technology, e.g., "Best Available Control Technology."
- The company and government officials also must: analyze the facility's impact on ambient air quality; its impact on soils, vegetation and visibility; and its impacts on national parks.
- All permits also must undergo opportunity for public comment and opportunity for challenge in state courts.

Recent "Best Available Control Technology" Examples

- New 585 MW power plant in Virginia, with 2 circulating fluidized bed boilers, burning bituminous coal and waste coal.
- Emission limits for each boiler:
 - PM₁₀ & PM_{2.5}: 37 lb/hr; 329 tons/yr combined total
 - SO₂: 91 lb/hr (24-hr average); 603 tons/yr total
 - NO₂: 219 lb/hr (30-day rolling average); 1,920 tons/yr
 - Mercury: 0.090 lb/TBtu (0.00000088 lb/MWhr)
 - No CO₂ limits

Recent "Best Available Control Technology" Examples (cont.)

Emission controls:

- PM/PM₁₀/PM_{2.5}, hazardous air pollutants: fabric filter baghouse
- SO₂ & sulfuric acid mist: flue gas desulfurization (scrubber)
- NO_x: selective non-catalytic reduction with ammonia injection
- Mercury: flue gas desulfurization (scrubber); fabric filter baghouse; & activated carbon injection
- Continuous emission monitoring for SO₂, NO_x, PM,
 CO, CO₂, mercury & opacity.

Operating Permits

- Primary compliance assurance mechanism of daily operation
- States issue 5-year permits that must contain all emissions limits, testing, monitoring, recordkeeping & reporting requirements
- Companies pay fees per ton of air pollution to run state operating permit programs

Operating Permits

- Public comment & hearing opportunities for permit issuance, certain revisions & renewal
- State judicial review opportunities of final permit actions by applicants and commenting public
- Federal EPA may block state permits
- Citizens may petition federal EPA to block state permits, and citizens may challenge EPA refusals to object in federal courts. Both these actions are rare.

Operating Permits & Compliance Assurance

- Permits must contain reliable, timely information for monitoring & assuring compliance with all emission limits
- Companies must submit semi-annual monitoring reports & reports detailing deviations from all permit conditions
- A responsible company official must submit annual compliance certifications, subject to personal criminal liability
- Applications, permits, monitoring & compliance reports are all publicly available

Compliance Assurance: Enforcement

- Government audits of emission reports
- Sufficient enforcement staff to do audits and bring enforcement cases
- Provide for enforcement by
 - States/Provinces
 - Citizens
- Administrative, civil & criminal enforcement

Assuring Compliance: Penalties

- Correct the problem injunction ordering clean up of pollution
- Punishment
 - U.S.: \$27,500/day of violation
 - "Supplemental Environmental Projects" (SEP)
- Additional penalties related to financial benefits of noncompliance

Assuring Compliance: Citizen Suits

- Citizen may sue
 - Against violator of emission limitation or permits
 - Against EPA to force action required by law
- Critics question
 - Standing
 - Encourage plaintiffs' lawyers
 - Encourage frivolous litigation harassing business
- Assessment of value of citizens' suits

Compliance Assurance: Role of States/Provinces

- States have own authority to enforce
 - Against violation of regulatory requirement
 - Common law action (N.C. v. TVA)
- States may also bring citizen suit
 - Against violator of regulatory requirement
 - Against EPA for failure to perform a nondiscretionary duty or a statutory violation when EPA issues regulations

Enforcement Case Example: AEP

- American Electric Power utility company sued by EPA, 8 states, 13 citizen groups for multiple air pollution violations due to significant pollution increases & failure to install pollution controls
- Settlement agreement covered 16 coal-fired power plants including 46 units, generating over 20,000 MW in 5 states

Enforcement Case Example: AEP

- NO_x from 16 plants reduced from 231,000 tons/yr to 72,000 tons/yr by 2016
- SO₂ from 16 plants reduced from 828,000 tons/yr to 174,000 tons/yr by 2018
- Required pollution controls estimated to cost more than \$4.6 billion
- \$15 million penalty to U.S. Treasury; \$60 million to pay for environmental mitigation